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Abstract

Fluid simulation for movies and games is still an active
field of research, although the fundamental Navier-Stokes
equations have been known for almost 200 years. The re-
quired computational power is extremely high, even with
many approximations. Also, the visual quality still has
room for improvement.

Our fluid simulation focuses on easy and fast ex-
change of algorithms. For example, we can switch semi-
Lagrangian advection with the modified MacCormack’s
scheme, while the pressure projection is done with the
finite element method in both variants. If the Courant-
Friedrichs-Lewy (CFL) condition is met, the pressure pro-
jection can be accurate. However, this condition can be
willingly violated, e.g. for performance reasons.

In our simulation with strongly violated CFL condition,
we investigate how mass conservation and visual quality
change with different advection methods. Also, we show
the influence of a higher grid resolution and shorter time
steps.

Our results show that the mass conservation is not per-
fect, neither with the semi-Lagrangian nor the modified
MacCormack’s scheme. Semi-Lagrangian advection con-
serves more mass in most cases. On the other hand, Mac-
Cormack’s gives slightly better visual results. A shorter
time step results in better fluid conservation. The visual
quality can be increased by using a higher resolution and
a shorter time step.

Keywords: Fluid Simulation, Finite Element Method,
Semi-Lagrangian, MacCormack’s, Courant-Friedrichs-
Lewy Condition

1 Introduction

Animating fluids for movies and games is a very complex
field. The required computational power is still extremely
high, and the quality of the simulation can always be im-
proved.
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Our contribution is an easy-to-understand test suite for
off-line fluid simulations in MatLab1. Parts like advection
and pressure projection can be easily exchanged. We use
this application to examine the differences in mass con-
servation and visual quality between the semi-Lagrangian
and the modified MacCormack’s advection scheme with a
violated Courant-Friedrichs-Lewy (CFL) condition.

There are two fundamental views for fluid simulations:
Lagrangian and Eulerian. The Lagrangian approach is to
simulate the fluid with particles, which is done for example
in PCISPH [11]. In the Eulerian approach, the information
about the fluid is given at fixed positions, usually at the
nodes of a regular grid. Our application implements the
Eulerian approach.

Fluids can be described with the Navier-Stokes equa-
tions. We do not care about viscosity and compressibility.
Therefore, we can use their simplified version, the incom-
pressible Euler equations [1]:

∂u
∂ t

+u ·∇u+
1
ρ

∇p = g, (1a)

∇ ·u = 0. (1b)

where u is the velocity vector in m · s−1 in a velocity field.
t is time in s. g is the sum external forces in kg ·m ·s−2, for
example gravity and forces caused by bodies interacting
with the fluid. ρ is the fluid’s density in kg ·m−3. p is the
pressure (force per area) of the fluid in kg ·m−1 · s−2. ∇ is
the gradient operator. ∇· is the divergence operator.

Equation 1a describes how the fluid reacts to forces,
which is much like the Newton’s equation F =m ·a. Equa-
tion 1b is known as zero-divergence or incompressibility
condition. When it is fulfilled, no fluid is created or de-
stroyed, as long as the density stays constant. Solving
these equations is complicated and usually requires most
of the computation time [1].

The finite element method is a numerical technique to
solve certain partial differential equations. We use it to
solve the pressure projection equation. Simply put, we
subdivide our entire simulation area into many small el-
ements. Finding a partial solution for each element and
then combining them is much easier than finding the entire

1https://www.mathworks.com/products/matlab.
html
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Figure 1: Single blocker scenario with 100x100 nodes at 120 FPS. The upper row is advected with semi-Lagrange and the
lower row with modified MacCormack’s. From left to right column: Frames 0, 60, 120, 180. Both use linear interpolation.

solution at once. The elements are primitives on a mesh.
In our case, the elements are square, and their vertices are
simply our grid nodes.

The Courant-Friedrichs-Lewy [3] condition is neces-
sary but not sufficient for the stability of hyperbolic partial
differential equations on a grid. When it is met, Equa-
tions 1 can be solved accurately. When the CFL condition
is violated, fast moving parts of the fluid can jump through
nodes and therefore ignore collisions. However, violat-
ing the CFL condition might be accepted, e.g. to reduce
the computational costs. We violate the CFL condition on
purpose and examine how different advection algorithms
react to it.

2 Related Work

Stam et al. [12] introduced an unconditionally stable semi-
Lagrangian advection scheme. Basically, their scheme
works by backtracking from each node to its origin. It
is described in Algorithm 1.

Algorithm 1 Semi-Lagrangian Advection

1: for each node in grid do
2: origin = node.position - node.velocity * deltaTime
3: newState = interpolate currentState around origin
4: end for

where the current state is for example the velocity field
or distance field of the last frame. Stam et al. suggest lin-
ear interpolation because higher-order interpolations cause
instabilities and spline interpolation smooths details [12].

Modified MacCormack’s advection scheme [10] is more
accurate through an error estimation and correction step.
Its main steps are:

Algorithm 2 Modified MacCormack’s Method

1: Semi-Lagrangian advection from the current state.
2: Backward semi-Lagrangian advection from (1).
3: res = (1) + (currentState - (2)) / 2
4: Clamp (3) with minimal and maximal values around

the node in (1).

Both advection schemes are compared visually by Co-
hen et al. [2] showing that MacCormack’s gives better re-
sults than semi-Lagrangian.

The CFL condition [3] is:

CFL≡ |u|∆t
∆x
≤CFLmax (2a)

where CFL is the non-dimensional CFL number. CFLmax
is a constant depending on the solver method, which is 1
for explicit time-marching solvers. |u| is the magnitude of
the greatest velocity in the velocity field. ∆t is the time step
and ∆x is the distance between grid nodes. With reshaping,
we find the critical velocity for which the CFL condition
is just met: |u|= ∆x

∆t .
Pressure projection is the process of making the fluid

divergence-free. We use our own FEM solver for this,
which is similar to the one proposed by Guermond et
al. [6]. The necessary reshaping of the incompressible Eu-
ler equations is described in Appendix A.

Surface tracking can be done with the level set method.
This approach works with distance information on a grid
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and was originally proposed by Osher and Sethian [9]. Os-
her and Fedkiw gave an overview of the research on level
set methods in 2001 [8].

3 Implementation

In this section, we describe the details of our fluid simu-
lation. We chose to implement it in MatLab because we
focus on simplicity. We want to be able to exchange al-
gorithms easily and use the many useful functions, espe-
cially the sparse matrix solver. On the downside, we expe-
rience long calculation times, far from being suitable for
real-time applications. The source code and supplemental
material are available online2.

At first, the initial state is loaded. Then, the free-slip
boundary conditions are set, meaning that velocities at
fluid-solid boundaries normal to the interface are set to
zero. Afterwards, we start the main loop:

Algorithm 3 Fluid Simulation Main Loop

1: Apply external forces to the velocity field.
2: Set velocities in solids to zero.
3: Calculate the pressure field and its gradient.
4: Subtract the pressure gradient from the velocity field.
5: Set air velocities to the velocity of the nearest fluid

node.
6: Advect the distance field.
7: Advect the velocity field.
8: Re-initialize distance field.
9: Draw and save current frame.

10: Save quality measures.

Our level set method stores the shortest distance to any
fluid-air interface at the grid nodes. The distances in the air
are negative. To move the interface with the fluid we sim-
ply advect the distance field with the same velocity field as
for the usual advection. However, the distances within the
fluid become more and more inaccurate over time. There-
fore, we re-initialize the distance field regularly. We do not
want the fluid-air interface to jump because of this. So, we
keep the distance values around the interface.

Our simulation stores quality measures for each frame.
We store the sum of the remaining divergence after pres-
sure projection and the number of fluid pixels in the frame.
This information allows us to see how the fluid volume
changes.

4 Results

In this section, we describe our results and how to repro-
duce the them. We show the influence of semi-Lagrangian
and modified MacCormack’s advection on mass conserva-
tion and visual quality.

2http://www.pplusplus.lima-city.de/femfluid.
html

The results are similar in all our scenarios, but the single
blocker scenario shows all phenomena in the nicest way.
All scenarios are simulated in a domain of 1x1 m. The
visualization settings are gridCellSize = 800 / numCells,
isobarWidth = 400 / numCells, and distanceRefresh inter-
val = 1.

4.1 Semi-Lagrangian vs. MacCormack’s

In the single blocker scenario, a circular blob of fluid falls
onto a smaller blocker and then into an empty rectangular
basin. When the blob collides with the blocker, the fluid
gushes to the bottom left and right corners of the basin.
There, the pressure values and velocities are the highest in
the entire simulation. The fluid splashes in the air, falls
back and slowly comes to rest.

As can be seen in Figure 1, the visual quality of semi-
Lagrangian and modified MacCormack’s advection is not
equal but similar. The MacCormack’s version features
finer structures, while semi-Lagrangian has more regular
structures.

Figure 2: Single blockers scenario frame 60 at 120 FPS.
The left column is advected with semi-Lagrange and the
right column with modified MacCormack’s. Interpolation
from top to bottom row: Linear, Cubic, Spline.

Figure 2 depicts the same frame calculated with dif-
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ferent interpolations for both advection schemes. Cubic
interpolation results in more details than linear interpola-
tion. Spline interpolation is like a slightly smoothed cu-
bic interpolation. This fits to the assumptions by Stam et
al. [12]. In our simulation, higher-order interpolations also
lead to strong instabilities, which cause movement out of
nowhere.

Figure 3: Maximum and average velocity of the single
blocker scenario at 120 FPS advected with MacCormack’s
linear.

In order for the CFL condition to be met, the veloci-
ties in this simulation should never be greater than δx/δ t,
which is 1.2 m/s for 120 FPS and 100x100 Nodes in a do-
main of 1x1 m. Figure 3 shows the maximum and average
velocities of each frame of our simulation. The maximum
velocity is almost five times as high as the critical velocity
for the CFL condition. Even the average velocity is too
high in many frames. Therefore, we expect major insta-
bilities in the simulation and, as a consequence, a loss of
fluid.

Figure 4: Number of fluid pixels of the single blocker
scenario advected with different algorithms and interpo-
lations.

The number of fluid pixels in each frame, depending on
the advection algorithm and interpolation method, as can
be seen in Figure 4. Most of the time, linear interpolation
is the best way. Only cubic interpolation in MacCormack’s
is better than linear in some frames. MacCormack’s spline
and semi-Lagrangian cubic lose considerably more fluid
than the already mentioned variant. Semi-Lagrangian with
spline interpolation causes the most fluid loss.

4.2 Time Step vs. Resolution

In this section, we examine how the fluid simulation reacts
when we shorten the time between the frames but keep the
resolution constant. As shown in Section 4.1, both advec-
tion schemes give similar results, and linear interpolation
is usually the best choice. Therefore, we focus here on the
modified MacCormack’s scheme with linear interpolation.

(a) Frame 5 at 10 FPS (b) Frame 15 at 30 FPS

(c) Frame 30 at 60 FPS (d) Frame 60 at 120 FPS

Figure 5: Single blockers scenario with 100x100 nodes
at 0.5 seconds using MacCormack’s with linear interpola-
tion.

Figure 5 illustrates the state of the single blockers sce-
nario after half a second. Figure 6 shows the fluid pix-
els over time. The results clearly indicate that a shorter
time step reduces fluid loss. The influence on visual de-
tails is difficult to judge. Either way, there is no obvious
improvement. In short, more calculation effort conserves
more fluid.

Next, we increase the resolution. We can either keep the
time step constant or we can shorten it to keep the critical
velocity of the CFL condition constant.

When we increase the resolution of the grid but keep the
time step constant, we receive the results shown in Fig-
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Figure 6: Fluid pixels of single blockers scenario with
100x100 nodes.

ure 7. It is not too visible here, the increased resolution
results in more visual details. Also, more fluid is lost, as
can be seen in Figure 8. In extreme cases, the increased
fluid loss can impact the overall visual quality. In short,
more calculation effort has a negative impact on fluid con-
servation but may improve the visual quality.

When we increase the resolution of the grid and shorten
the time step, we receive the results shown in Figure 9.
Obviously, with an increased resolution more visual de-
tails appear. At the upper corners of the blocker, one can
see that the fluid there is less irregular, with a higher res-
olution and a shorter time step. Also, more fluid is con-
served, as can be seen in Figure 10. In short, a greater
calculation effort results in better visual quality and more
fluid conservation. Also, we can conduct that the visual
quality and fluid conservation does not correlate with the
critical velocity of the CFL equation.

5 Conclusion and Future Work

Our results show that semi-Lagrangian and modified Mac-
Cormack’s advection schemes are similar in terms of vi-
sual quality and fluid conservation, as long as linear inter-
polation is used. MacCormack’s gives slightly better vi-
sual results and does not loose much more fluid with cubic
interpolation.

For our simulation, with the CFL condition being
strongly violated, we found the following rules of thumb:
To increase the visual quality a fluid simulation, increase
the grid resolution and shorten the time step. To increase
the fluid conservation, focus on a shorter time step. Avoid
increasing the grid resolution without adapting the time
step, or the fluid will be lost faster.

For future research, we want to increase the accuracy
of our simulation, for example by reducing the numerical
diffusion. We will compare our current results with other
advection algorithms, such as the one by Lintine et al. [7].

(a) 50x50 nodes (b) 100x100 nodes

(c) 200x200 nodes

Figure 7: Single blocker scenario after 0.5 seconds.

In addition, we intend to compare the current pressure pro-
jection using FEM with a finite differences approach. The
level set method is another point that we could compare,
e.g. to the improved version by Enright et al. [4]. We
will also investigate the difference between ignoring the
air completely and simulating it as a second fluid with
much lower density, also in context of numerical stability.

A FEM Pressure Projection

This appendix section explains how to transform the in-
compressible Euler equations into a useful form for our
FEM solver. With operator splitting, we can get the pres-
sure projection part out of the Equations 1a:

∂u
∂ t

+
1
ρ

∇p = 0 (3)

With the forward Euler approximation, zero divergence
of u, and the Helmholtz theorem, we can reshape and
simplify the pressure projection equations to this Poisson
equation:

∆t
ρ

∇
2 p = ∇ ·w. (4)

where w is the ’old’ velocity field. ∇2 is the Laplace oper-
ator, which is the divergence of the gradient.

We solve this Poisson equation 4 with the finite element
method (see Section 3). The result is the current pressure
field. We calculate the pressure gradient with finite dif-
ferences. We use central, forward, and backward differ-
ences to avoid calculations with the non-defined velocities
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Figure 8: Fluid pixels of the single blocker scenario with
different resolution and constant time step.

in solids. Then, we subtract the pressure gradient from
the current velocity field and - if the solution is accurate -
receive a new, divergence-free velocity field.

To use the Poisson equation in FEM, we need to trans-
form it to its weak form and can further simplify it to:

∆t
ρ

∫
Ω

∇p ·∇φ dA =
∫

Ω

∇ ·w φ dA (5)

where φ is any test function, which disappears later and
is therefore not exactly specified. The weak form is an
approximation that is only accurate ’on average’. The av-
eraging is done by multiplying the weak form with the test
function and integrating. We do the integration with the
Gaussian quadrature. For this, we need to to get the node
values everywhere in an element, which we do with bi-
linear interpolation. Ω is the is the fluid domain.

We create a ’local’ 4x4 matrix for each element, which
represents the pressure influence of each node on each
node. We calculate the elements of the ’local’ matrices
with the Gaussian quadrature. With reshaping and Gaus-
sian quadrature, we can turn the weak form into a form for
single elements.

The right-hand side is:

fe =
4

∑
i=1
|J(si)|

(
B(si)

T
|1|w̃(si)

e
x +B(si)

T
|2|w̃(si)

e
y

)
N dA.

The left-hand side is:

Ke =
4

∑
i=1

wi |J(si)|B(si)BT (si).

where i is the index of the element’s nodes. si is the sam-
pling position of node i for the Gauss quadrature, which
are

s1,...,4 =

±√ 1
3

±
√

1
3



(a) 50x50 nodes (b) 100x100 nodes

(c) 200x200 nodes

Figure 9: Single blockers scenario after 0.33 seconds.

The sampling weights are 1. J is the Jacobian matrix of
the element. It encodes the partial derivatives of the shape
functions with respect to global coordinates. B contains
the partial derivatives of the shape functions with respect
to global coordinates. |1| denotes the column vector for
the x derivatives, |2| for y. w̃ is the velocity at the node’s
sampling position. N is the shape function encoding the bi-
linear interpolation. For more mathematical details, please
have a look at the elaboration by Christian Hafner3, which
is based on the work by Fuerst [5].

Boundary conditions describe how the fluid reacts at
its boundaries. For example, we can ignore completely
air-filled elements because its low density can only apply
negligible forces on the fluid. In elements containing fluid
and air, we set the influence of air nodes to zero. We keep
solid objects undeformed; therefore, we can also ignore
elements that are completely inside the solids. Mixed el-
ements at the solid-fluid boundary are treated like com-
pletely fluid-filled ones. The only difference is that the
velocity of the solid nodes is set the object’s local velocity,
which is zero in our application. The friction at fluid-solid
interfaces determines if the fluid can slip along the solid.
In other words, the fluid touching an object can have a
different velocity than the object. When the friction is
zero, the boundary condition is ’free-slip’. To make the
fluid move at the same velocity as the object, the suitable
boundary condition is ’no-slip’. It is also possible to have
a mixture of both. We use ’free-slip’, which is already
included in the zero-divergence condition of the Navier-

3http://www.pplusplus.lima-city.de/lib/data/
femfluid/FemFluid.pdf
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Figure 10: Fluid pixels of the single blocker scenario with
different resolution and adapted time step to keep the crit-
ical velocity of the CFL condition constant.

Stokes equations 1b.
All ’local’ matrices are combined to a ’global’ matrix.

For this, we need a global index for each node. Values
from the ’local’ matrices with the same global index are
added in the ’global’ matrix. This ’global’ matrix is sparse
because only few elements around the diagonal are non-
zero. In our application, MatLab solves this large matrix
giving us the pressure field. The Jacobi iterative method is
probably the easiest algorithm to solve matrices. When us-
ing other algorithms, make sure the matrix is numerically
stable, e.g. through pivoting.
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[7] Michael Lentine, Jón Tómas Grétarsson, and Ronald
Fedkiw. An unconditionally stable fully conservative
semi-lagrangian method. Journal of Computational
Physics, 230(8):2857 – 2879, 2011.

[8] Stanley Osher and Ronald Fedkiw. Level set meth-
ods: An overview and some recent results. Journal
of Computational Physics, 169(2):463 – 502, 2001.

[9] Stanley Osher and James Sethian. Fronts propagating
with curvature-dependent speed: Algorithms based
on hamilton-jacobi formulations. Journal of Compu-
tational Physics, 79(1):12 – 49, 1988.

[10] Andrew Selle, Ronald Fedkiw, Byungmoon Kim,
Yingjie Liu, and Jarek Rossignac. An uncondition-
ally stable maccormack method. Journal of Scientific
Computing, 35(2):350–371, 2008.

[11] Barbara Solenthaler and Renato Pajarola. Predictive-
corrective incompressible sph. In ACM SIGGRAPH
2009 Papers, SIGGRAPH ’09, pages 40:1–40:6,
New York, NY, USA, 2009. ACM.

[12] Jos Stam. Stable fluids. In Proceedings of
the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’99,
pages 121–128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Related Work
	Implementation
	Results
	Semi-Lagrangian vs. MacCormack's
	Time Step vs. Resolution

	Conclusion and Future Work
	FEM Pressure Projection

