
Real-Time Image-Based Lighting of Dynamic Scenes with
Moment Soft Shadow Mapping

Tom Kneiphof∗

Supervised by: Stefan Krumpen†

Institute of Computer Science II - Computer Graphics
University of Bonn
Bonn / Germany

Abstract

Casting shadows in dynamic scenes under complex illumi-
nation is a challenging problem, since no precomputation
can be applied. The illumination is provided in form of
a light probe, which potentially changes every frame. We
propose a method for generating area lights from the light
probe, built upon a median cut algorithm for light probe
sampling. The shadows from the area lights are efficiently
computed by moment soft shadow mapping, which has a
lower memory footprint than other techniques. In this pro-
cess very large area lights are utilized, pushing the limits of
moment soft shadow mapping. We demonstrate the use of
6 instead of 4 moments in moment soft shadow mapping,
which drastically increases the quality of the shadows for
large area lights. We also present some other modifica-
tions, in order to improve the resulting shadows. We im-
plemented the algorithm for generating area lights in com-
pute shaders and demonstrate the sampling of animated
light probes on the GPU and lighting of a dynamic scene
in real time.

Keywords: real time, moment shadow mapping, soft
shadows, area lights, light probes, environment maps

1 Introduction

In real-time applications one usually deals with direct
lighting only. The computation of indirect illumination,
where light is reflected multiple times in a scene before be-
ing observed, is expensive, especially for dynamic scenes,
and usually precomputed.

We illuminate a small dynamic scene, where the inci-
dent light is affected by a larger scene. In this scenario
we want to incorporate single bounce indirect illumina-
tion, where the light is reflected once in the larger scene
before entering the smaller scene. A light probe is used
as an intermediate representation for the incident illumi-
nation, which maps each direction to the corresponding
radiance entering the smaller scene. Since we do not have

∗kneiphof@cs.uni-bonn.de
†krumpen@cs.uni-bonn.de

depth information of light probe at hand, the sources of
the light are assumed to be infinitely far away. In this pa-
per the light probe is given to us, and we do not deal with
the creation of light probes.

In the smaller scene, we want to compute the shadows
caused by the incident illumination, since shadows are an
important visual cue in rendering. They provide valuable
information about the spatial relation between objects and
contribute to the overall realism. Shadow mapping [13]
is the state of the art technique for casting shadows from
point lights. Various extensions for shadow mapping exist,
which improve the quality of the produced shadows. Other
extensions [2, 5, 9] approximate the shadows casted by
area lights based on shadow mapping.

In this paper, we approximate the light probe by area
lights. Our algorithm for generating the area lights extends
the median cut algorithm for light probe sampling [4], but
can work with any algorithm that cuts a light probe into
regions. We implement our technique for generating the
area lights on the GPU, with the aim of generating the area
lights every frame, allowing for animated light probes.

The shadows casted from the generated area lights are
then computed by moment soft shadow mapping [9]. We
compare the performance and visual quality of moment
soft shadow mapping [9] and convolution soft shadow
mapping [2], as well as percentage closer soft shadows [5].

In Section 2 we lay out other techniques related to the
problem approached by this paper. Section 3 lays out
the techniques that this paper is built on and Section 4
addresses our changes and extensions and Section 5 de-
scribes implementation details. Results are presented in
Section 6 before we conclude in Section 7.

2 Related Work

Path tracing [6] is able to illuminate a scene by a light
probe, by shooting rays into the scene and performing
Monte Carlo integration. But it is very costly and is not
suitable for real-time applications. However, it provides
a ground-truth solution, thus we can use path tracing to
evaluate the visual quality of our approach.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Precomputed radiance transfer [11] uses spherical har-
monics to approximate a given light probe by a linear com-
bination of a few basis light probes. The full global il-
lumination of a static scene is precomputed for each ba-
sis light probe. The precomputed global illumination is
then used to approximate the illumination under the given
light probe. An advantage of this technique is, that it also
takes interreflections inside of the illuminated scene into
account. The major drawback of this technique is, that it
uses a static scene. Another disadvantage is, that it handles
only low frequency lighting. High frequency light sources,
like the sun, are not handled well by this technique.

In this paper, we pursue an alternative approach, which
generates light sources from a light probe and uses them
to illuminate the scene. Several algorithms have been pro-
posed [4, 12], which partition a light probe into regions
and define a point light at the centroid of each region.
Once the point lights are created, the illumination of the
scene can be computed by applying shadow mapping [13].

In the context of convolution soft shadow mapping [2]
another light probe sampling algorithm was presented. It
picks the brightest pixel in the light probe, fits an area light
around it, removes the corresponding radiance from the
light probe, and repeats until the desired number of lights
has been created or the light probe is empty.

Soft shadow mapping techniques are based on percent-
age closer soft shadows (PCSS) [5]. The main idea is to
compute the average blocker depth in front of a fragment
to be lit under the assumption that all shadow casting ge-
ometry shares the same depth in the shadow map frustum.
The final filter region for the visibility test is then chosen
based on the average blocker depth.

Convolution soft shadow mapping (CSSM) [2] is an ex-
tension of convolution shadow mapping (CSM) [1], which
allows for prefiltering shadow maps. By storing additional
terms in the shadow map, the average blocker depth can
be prefiltered as well. CSM uses the Fourier transform to
derive a linearized form of the visibility test, where terms
depending on the fragment depth and terms depending on
the shadow map value are separated. This way, the shadow
map can be filtered independently of the receivers frag-
ment depth. In CSSM the same is done for the average
blocker depth as well, which requires additional informa-
tion to be stored in the shadow map.

Moment shadow mapping (MSM) [10] can be easily ex-
tended to moment soft shadow mapping (MSSM) [9] with-
out storing any additional terms in the shadow map. This
leads to a very low memory footprint compared to CSSM.
For more details see Section 3.2.1.

3 Background

In this section we describe the existing techniques that are
crucial for this paper.

Light Probes A light probe specifies for each direction
the incoming radiance in the red, green and blue band. The
light probe is internally represented as a cubemap, which
is essentially an array of six 2D textures, mapped onto the
unit cube. GPUs have methods built in for sampling cube-
maps by a directional vector. However, our algorithm will
work on the 2D cubemap faces directly.

Summed Area Tables A lot of sums have to be com-
puted during shadow mapping and the creation of the area
lights from the light probe. Only considering sums over
rectangular regions, summed area tables (SATs) can be
used to accelerate the computation. A summed area table
S on a 2D texture T stores at each texel (u,v) the sum:

S(u,v) =
u

∑
x=0

v

∑
y=0

T (x,y) (1)

The sum over a rectangular region [x1,x2]× [y1,y2] can
then be computed in constant time as follows:

x2

∑
x=x1

y2

∑
y=y1

T (x,y) = S(x2,y2)+S(x1−1,y1−1) (2)

−S(x2,y1−1)−S(x1−1,y2) (3)

3.1 Light Probe Segmentation

In order to generate area lights from a light probe, we par-
tition the light probe into a number of regions. For each
region, an area light is then created, as described in Sec-
tion 4.1. A median cut algorithm for light probe sam-
pling [4] is employed for the partitioning step.

Initially for each cubemap face, one rectangular region
is created, which spans the whole face. While the num-
ber of regions is lower than the number of desired light
sources, each region is subdivided along its longer edge.
The subdivision of a region is done in such a way, that the
illuminance of the original region is split evenly across its
two subregions. The illuminance Mv(R) of a region R is
the integral over the contained luminance Lv(R). The lu-
minance is obtained from the radiance in red, green and
blue bands in the light probe by weighting them with the
response function of the human eye. In order to compute
the illuminance of a region in constant time during the par-
titioning, a summed area table is computed beforehand.

3.2 Soft Shadow Mapping

Our goal is to compute the shadows casted from area
lights, which are generated from a light probe. Shadow
mapping [13] assumes the light sources to be point lights.
However, this technique can be extended to approximate
soft shadows, casted from area lights. In order to achieve
this, all blocking geometry between the light source and
the receiver is assumed to share the same distance to the
receiver [5].

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Consider an area light of size szL and a receiver p, for
which the visibility from the area light shall be computed.
The receiver p has depth d(p) in the shadow map frus-
tum and samples the shadow map at location xp, giving
a shadow map depth of z(xp). In order to compute the
visibility of p from the area light, a filtered visibility test
s f (p) is evaluated (see Eq. 6). The size of the visibility test
is chosen depending on the average blocker depth zavg(p).

At first, we compute the average blocker depth zavg(p)
in some search region in the shadow map (see Eq. 4). The
size of the search region usually depends on the size of the
area light szL.

zavg(p) :=
[w∗ z · (1− f (d(p),z))](xp)

[w∗ (1− f (d(p),z))](xp)
(4)

Here, w is a linear filter, corresponding to the search re-
gion. f (d,z) is a binary function, comparing fragment
depth d with some shadow map z, which evaluates to 1
if d < z and 0 otherwise.

Assuming that all blocking geometry share the same
depth zavg(p), a filter size sz f for the visibility test is cho-
sen, such that it covers all shadow map samples which
could block the receiver, given that they are located in
depth zavg(p) (see Figure 1). Let szL be the size of the area
light. Then the size sz f of the filter region for the visibility
test is obtained as follows:

sz f =
szL

d(p)
· (d(p)− zavg(p)) (5)

This results in the final filtered visibility test s f (p), where
w is a linear box filter with size sz f :

s f (p) := [w∗ f (d(p),z)](xp) (6)

The computation of the visibility for an area light re-
quires three filtering operations per receiver, as defined in
Eq. 4 and Eq. 6. Percentage closer soft shadows [5] com-
putes these explicitly in the fragment shader, which is very
expensive for large filter regions. Therefore, it is highly
desirable to use filterable shadow maps to accelerate the

Light Source

Blocker

d
(p

)

Receiver

z
a
v
g
(p

)

szf

szL

Figure 1: Illustration of the relation between fragment
depth d(p), average blocker depth zavg(p), area light size
szL and filter size sz f .

filtering operations. Summed area tables are well suited
for applying box filters of variable sizes.

3.2.1 Moment Soft Shadow Mapping

Moment shadow mapping (MSM) [10] is a filterable
shadow mapping technique. It stores m moments z1, . . . ,zm

in a moment shadow map. A lower and upper bound for
the filtered visibility test is then estimated, based on the
filtered moments. In practice, the upper bound for the visi-
bility test is used, implying that lit surfaces are never shad-
owed. However, light leaking can occur, in which shad-
owed surfaces are illuminated.

MSM can be extended to compute the average blocker
depth for a given filter region, resulting in moment soft
shadow mapping (MSSM) [9]. In the moment shadow
mapping algorithm, a discrete depth distribution z1, . . . ,zn
with weights w1, . . . ,wn is constructed. These depth val-
ues can be used to estimate the result of zavg(p) as well.
No additional information has to be stored in the shadow
map, in order to compute the average blocker depth.

zavg(p) =
ε ·d(p)+∑

n
i=1,zi<d(p) wi · zi

ε +∑
n
i=1,zi<d(p) wi

(7)

In order to compute zavg(p) robustly, a constant ε is intro-
duced, that moves the average blocker depth slightly to-
wards the receiver and ensures that the nominator never
approaches zero.

4 Methodology

4.1 Area Light Generation

Our algorithm for extracting area lights from a light probe
builds on a median cut algorithm for light probe sam-
pling [4] as described in Section 3.1. Here, the final parti-
tion of the light probe is given, and we describe how area
lights are derived from regions on a cubemap face.

4.1.1 Cubemap Weighting

Generating area lights from the light probe requires inte-
gration on the unit sphere, where a point on the sphere
represents a direction. However, the integration domain is
specified in terms of a cubemap face, since the light probe
is given as a cubemap. Unfortunately, cubemaps do not
sample the unit sphere regularly, meaning that some re-
gions are oversampled and some are undersampled. It is
important to account for this fact in order compute the in-
tegrals correctly and to conserve the light probe’s energy.

Using the transformation formula “from calculus”, we
can derive a weighting factor w(u,v) depending on nor-
malized cubemap face coordinates u,v ∈ [−1,1], which
accounts for the irregular sampling:

w(u,v) := (u2 + v2 +1)3/2 (8)

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



When approximating an integral by a finite sum of samples
on the cubemap face, each sample is weighted by w(u,v).
Integrating 1 over the domain of [−1,1]2 gives 4, so we
want the sum over all samples in a cubemap face to be 4.
The number of samples in a cubemap face of size m×m is
given by m2. So another factor of 4

m2 is applied.

4.1.2 Area Light Dimensions

Consider a region R of the final light probe partition. The
direction of the area light corresponds to the centroid µ(R)
within the region R on the cubemap, where the samples x
in the region are weighted by their luminance value Lv(x).
The size of the area light is estimated based on the spa-
tial variance along the x and y axis of the cubemap face
containing R, again weighted by luminance.

µ(R) =
∫

R w(x)Lv(x)xdx∫
R w(x)Lv(x)dx

(9)

Σ(R) =
∫

R w(x)Lv(x)(x−µ)(x−µ)t dx∫
R w(x)Lv(x)dx

(10)

If the x and y axes are correlated, the covariance matrix
can be diagonalized in order to align the area light with the
principal directions of spatial variance. However, we find
that this does not improve the quality of the generated area
lights. Considering the variance along the x and y axes
independently leads to sufficiently good results.

In the following, we consider the 1-dimensional case:
The area light corresponds to a uniform distribution U(µ−
d,µ + d), where µ is the centroid and d is the size of the
area light. Such a distribution has a variance of σ2 = 1

3 d.
By measuring the variance σ2 from the light probe (see
Eq. 10), we can compute the extent of a uniform area light.

Once the size of the area light along the x and y axes
of the cubemap face is determined, the shadow map frus-
tum is derived by defining the basis vectors of the shadow
map frustum in the world coordinate system. The z axis
of the frustum is chosen as the direction of the area light.
For the other two basis vectors, the horizontal and vertical
basis vectors of the cubemap face are transformed into the
world coordinate system, and projected into the orthogo-
nal complement of the z axis. The size along the x and y
axes is scaled by the length of the corresponding projected
vector. All three vectors are then normalized.

4.1.3 Area Light Illumination

The irradiance of the area lights can be computed from
the light probe using summed area tables (see Eq. 11).
However, using the irradiance Me(R) directly for illumi-
nation leads to wrong results, which do not conserve en-
ergy. Since we cannot afford to perform the integration
(see Eq. 13) according to the rendering equation [6] ex-
plicitly, we want to find a good closed from expression. In
our case, we only consider diffuse surfaces.

Me(R) =
∫

R
w(x)Le(x)dx (11)

In the following, we consider circular directional area
lights, which have an opening angle αA, mean direction
ωA and emit uniform radiance LA

e . The solid angle covered
by the area lights is denoted as ΩA. For such area lights,
the integral in the rendering equation can be expressed in
closed form for diffuse surfaces, neglecting any occlusion.

Let ρ(p) = ρ(p,ωi,ωo) be the diffuse BRDF model of
a point p. The surface normal of p is ~np. Then p emits
radiance Lo

e(p,ωo) along direction ωo.

Lo
e(p,ωo) =

∫
ΩA

ρ(p,ωo,ωi)LA
e (p,ωi)〈ωi,~np〉 dωi (12)

= ρ(p)LA
e

∫
ΩA

〈ωi,~np〉 dωi (13)

The integral over ΩA can be transformed to polar coordi-
nates in order to solve it.∫

ΩA

〈ωi,~np〉dωi =
∫ 2π

0

∫
αA

0
sin(θ)〈ωi,~np〉 dθdφ (14)

= π(1− cos2(αA))〈ωA,~np〉 (15)

We are given a certain region on the light probe, on which
we can easily compute the irradiance MA

e = Me(R). The
radiance LA

e can be expressed depending on MA
e , since LA

e
is constant across the area light.

MA
e =

∫
ΩA

LA
e dω = LA

e

∫
ΩA

1dω (16)

= LA
e 2π(1− cos(αA)) (17)

Considering these identities for Eq. 13 yields:

Lo
e(p,ωo) = ρ(p)

(1− cos2(αA))

2(1− cos(αA))
MA

e 〈ωA,~np〉 (18)

For αA → 0, the fraction vanishes to 1 and we obtain a
point lights as the limit.

4.2 Soft Shadow Mapping

In this section we discuss our changes and extensions to
moment soft shadow mapping. Large area lights are used
heavily in our scenario. Percentage closer soft shadow
mapping based techniques suffer from large area lights in
general. Moment soft shadow mapping suffers from large
area lights even more.

4.2.1 6 Moments for Shadow Mapping

The moment shadow mapping algorithm is defined for ar-
bitrary large number of moments m ∈ 2N [10]. However,
in practice m = 4 moments are stored in the shadow map,
which allows simple distributions of three depth values
to be reconstructed exactly. In large filter regions, the
underlying depth distributions are often more complex,

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



which results in a poor approximation by only three dis-
crete depth values, and therefore weakened shadows.

When utilizing more moments, the constructed distribu-
tion consists of a larger number of depth values, resulting
in a better approximation of the original distribution. This
way, a sharper estimate for the visibility test and the aver-
age blocker depth is achieved.

Making use of m = 6 moments reconstructs four depth
values from the filtered moments. The algorithm involves
finding the roots of a polynomial of degree m

2 , which is
hard for larger numbers of m. For m = 4, the roots of
a quadratic polynomial can be computed robustly. For
m = 6, the roots of a cubic polynomial must be computed.
Peters [8] provides a robust implementation.

The weights of the depth values are computed by solv-
ing a 4×4 linear equation system. Here, utilizing the built-
in matrix inverse function gave the fastest and most robust
results. We also tried utilizing an explicit LU and QR de-
composition in the shader code.

4.2.2 Upper Bound Blocker Depth

A potentially very large filter region is considered for the
estimation of the average blocker depth zavg(p). Large fil-
ter regions are likely to contain complex depth distribu-
tions, which cannot be handled well by moment shadow
mapping, leading to a poor lower bound of zavg(p), which
in turn will lead to an overestimated filter region for the
visibility test. This will not only make shadows appear too
soft, but also give a worse lower bound for the visibility
test. Overestimating zavg(p), by effectively allowing self
shadowing (see Eq. 19), results in hard shadows when in
doubt, instead of too soft shadows.

zavg(p) =
∑

m
i=1,zi≤d(p) wi · zi

∑
m
i=1,zi≤d(p) wi

(19)

In practice, we clamp wi to the interval [δ1,δ2], for zi =
d(p). Choosing δ1 > 0 guarantees that the nominator is
always sufficiently large in order to avoid a division by
zero. Choosing δ1 = δ2 = ε corresponds to Eq. 7.

4.2.3 Front and Back Face Shadow Maps

In this scenario potentially very large area lights are used
for lighting, which requires a large depth bias in order to
avoid self shadowing of tilted surfaces. On the other hand,
a large depth bias results in Peter panning.

Additionally, we observed that only the silhouette edges
of the blocking geometry determine the softness of shad-
ows in the real world. Traditionally, only the front faces
are rendered into the shadow map, which will always give
a lower bound for the “true” silhouette edge based blocker
depth. Analogous, an upper bound is obtained, when only
the back faces of the geometry are used. Combining the
depth of the front faces and the back faces (before con-
struction of a filterable shadow map) leads to a depth value
residing inside of the geometry, rather than on its surface.

Taking the average of the front and back face depth will
lead to a better approximation of the silhouette edge based
blocker depth. This also allows us to neglect the depth bias
during the visibility test, because the shadow map samples
are no longer located on the surface of the geometry.

This works only for convex geometry without holes.
Concave geometry has to be extended by some faces in its
interior, such that it effectively consists of multiple convex
geometries. A major disadvantage of this approach is the
fact, that rendering of the depth only shadow map is done
twice before constructing a filterable shadow map.

5 Implementation

We implemented the light probe segmentation, as well as
the area light extraction, in compute shaders in order to
generate the area lights in real time from the light probe.
All integrations are accelerated by summed area tables.
The first step is to resolve the original values from the ra-
diance given in the light probe, followed by a horizontal
and a vertical summation step.

We need to integrate the luminance, which is the Y
channel in the XYZ color space, as well as integrals on
all color channels. Therefore, we use the XYZ color space
to save one summed area table.

The median cut algorithm is implemented in a compute
shader as well, which runs 256 threads in a single thread
group working together. Each thread splits one region at a
time, or none. After each iteration, the regions are sorted
with a bitonic sorter [3] in order to remove “empty” entries
from the regions list. Once the final regions are created, a
last compute shader resolves the area lights from these re-
gions. The area lights are then fed into a deferred renderer,
applying the soft shadow mapping.

6 Results

In order to test the quality of the extracted area lights, path
traced images are used as reference and the extracted area
lights are rendered using PCSS. In addition, we compare
the quality and performance of MSSM with four and six
moments and CSSM to PCSS for rendering the area lights.

We implemented PCSS, CSSM and MSSM, as well as
the algorithm for area light extraction in OpenGL 4.5. We
used an Intel i7 4790k with 16GB RAM and an NVIDIA
GeForce GTX 1080 running Ubuntu 16.04 as our test sys-
tem. The runtime of individual draw calls and compute
shader invocations have been measured using the Linux
Graphics Debuger [7].

6.1 Area Light Generation

In Figure 2 we compare the illumination by point lights
and area lights, extracted from a light probe, with the
ground truth illumination. When using only 16 area lights

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) 16 Point Lights (b) 32 Point Lights (c) 16 Area Lights (d) 32 Area Lights

(e) 64 Point Lights (f) 256 Point Lights (g) 64 Area Lights (h) Ground Truth

Figure 2: Scene illuminated by different amounts and types of light sources, extracted from the light probe. The ground
truth (h) was rendered using a path tracer considering direct illumination only.

2562 10242 20482

Cubemap Resolution

5.0

10.0

15.0

20.0

0.3

R
u

nt
im

e
in
m
s

(a) Summed Area Tables

16 64 128 256
Number of Lights

10
12
14
16
18
20
22
24
26

R
u

nt
im

e
in
µ
s

(b) Area Lights

16 64 128 256
Number of Lights

20
40
60
80

100
120
140
160

R
u

nt
im

e
in
µ
s

Cubemap Resolution

2562

5122

10242

20482

(c) Light Probe Segmentation

Figure 3: Runtime for generating area lights on the GPU.
(a) shows the runtime for computing the SATs from the
raw light probe. (c) shows the runtime for the median cut
algorithm, and (b) show the runtime required to retrieve
the parameters of the area lights from the final regions.

to approximate the whole light probe, very large area lights
are generated, for which the soft shadow mapping tech-
nique produces artifacts (see Figure 2c). Utilizing 32 area
lights results in plausible shadows. When using as much as
256 point lights from the light probe, hard shadow bound-
aries are still visible. Thereby, utilizing less area lights
results in more plausible shadows than many point lights.

We measured the runtime of the light probe sampling
algorithm on the GPU for different light probe resolutions

and amounts of light sources to generate (Figure 3). The
runtime for creating the actual area lights from the final
regions is very low and grows linearly with the number
of area lights. The runtime for creating the SATs grows
quadratic with the sidelength of a cubemap face, which is
as expected. Even for a cubemap resolution of 256×256,
the creation of the summed area tables takes the major
amount of time. The runtime of the segmentation on the
other hand is little impacted by the cubemap resolution,
thanks to the summed area tables, and is logarithmic in the
number of area lights to create, which means that the seg-
mentation scales well with the number of lights to create.

6.2 Soft Shadow Mapping

We divided runtime measurements of the whole shading
process into a resolve step, a step to create the SATs and
a shading step (see Figure 4). None of these steps de-
pends on the scene complexity, since they all work in im-
age space. The rendering of the shadow map and the ren-
dering of the scene into the geometry buffer is not covered
here, since these steps are the same for all techniques.

For CSSMm, m refers to the number of terms stored in
CSM. Since CSSM stores additional terms in the shadow
map, CSSMm stores 2m+1 terms in the shadow map. For
MSSMm, only m terms are stored in the shadow map.

Since PCSS explicitly computes the convolutions in the
fragment shader, the shading pass takes a lot of time, com-
pared to MSSM and CSSM, and even more when increas-
ing the shadow map or screen resolution. It is therefore
not suitable for real-time applications in this context. Also
when shading 16 area lights simultaneously, the shading
pass of CSSM16 scales poorly with shadow map resolu-
tion. Only for MSSM4, the runtime of the shading pass is
not affected by a shadow map resolution of 10242.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



2562 5122 10242

Shadow Map Resolution

0
1
2
3
4
5
6
7
8
9

R
u

nt
im

e
in
m
s

(a) Resolve

2562 5122 10242

Shadow Map Resolution

0
5

10
15
20
25
30
35

R
u

nt
im

e
in
m
s

(b) Summed Area Tables

2562 5122 10242

Shadow Map Resolution

0
20
40
60
80

100
120
140

R
u

nt
im

e
in
m
s

(c) Shading

720p1080p1440p 2160p
Screen Resolution

0
20
40
60
80

100
120
140

R
u

nt
im

e
in
m
s

(d) Shading

MSSM4 MSSM6 CSSM8 CSSM16 PCSS

(e) Legend

Figure 4: Runtimes for applying the shading for 16 area
lights simultaneously. In (a) the multisampled front- and
back-face shadow maps are combined and the filterable
shadow maps are created. In (b) the SATs are computed
for the CSSM and MSSM techniques. (c) and (d) show the
runtime for the actual shading, depending on the shadow
map resolution and screen resolution, respectively. In (c)
the screen resolution is locked to 1280×720 and in (d) the
shadow map resolution is locked to 2562 pixels.

CSSM8 and CSSM16 give reasonable results, even
though the overall appearance of the scene is slightly dark-
ened. CSSM8 stores 17 and CSSM16 33 values in the
shadow map, resulting in a poor runtime, compared to
MSSM4, which stores only 4 values in the shadow map
and MSSM6, which stores 6 values. The MSSM tech-
niques score a better runtime in the shading pass although
they are computationally more intensive.

The variants of MSSM are compared in Figure 7. The
shadows from MSSM4 are quite weak. When using 6 mo-
ments, the shadows are stronger, since a sharper bounds
are achieved. In both cases, using an upper bound for the
average blocker depth makes the shadows less weak.

When using a large shadow map resolution in conjunc-
tion with large area lights, the maximum filter region for
MSSM is problematic, since a given filter region in nor-
malized coordinates spans a larger number of pixels in the
shadow map. This leads to filtered hard shadows instead
of plausible soft shadows in some cases. Since the shad-
ows caused by large area lights are very smooth anyway,
aliasing is less of an issue. We used a shadow map reso-
lution of 2562 and a maximum filter size of 272 pixels for
all techniques with 4×MSAA where applicable.

(a) MSSM6

(b) PCSS (c) MSSM4 (d) MSSM6

(e) CSSM8 (f) CSSM16 (g) CSSM32

Figure 5: Comparison of soft shadow mapping techniques.
The light probe is approximated by 64 area lights.

7 Conclusion

We demonstrated the use of MSSM for efficiently casing
plausible soft shadows from area lights and compared it to
PCSS and CSSM. When generating light sources from a
light probe, using fewer area lights results in more plausi-
ble shadows than using more point lights.

Our results show that MSSM is faster than CSSM and
has a lower memory consumption. Due to the large size
of the sampled area lights, PCSS requires a huge com-
putational effort and cannot compete with neither MSSM
nor CSSM. However, MSSM has problems with very large
area lights as well. We demonstrated, that significantly
sharper bounds of the visibility test can be achieved for
complex depth distributions, by using six moments in the
shadow map. Also, using an upper bound for the average
blocker depth helps a lot with handling complex depth dis-
tributions. This way, hard shadows are approached instead
of missing shadows in challenging situations.

The algorithm for extracting area lights from light
probes we presented scales well with light probe resolu-
tion and the number of area lights to extract from the light
probe. Furthermore the energy of the light probe is pre-
served, which avoids large changes in illumination, while
the incident light changes only a little. This allows to illu-
minate our scene by animated light probes.

Future work would involve, rendering the light probe

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) MSSM6

(b) PCSS (c) MSSM4 (d) MSSM6

(e) CSSM8 (f) CSSM16 (g) CSSM32

Figure 6: Comparison of soft shadow mapping techniques.
The light probe is approximated by 64 area lights.

in real time instead of loading precomputed light probes
onto the GPU. In doing so, the depth buffer of the light
probe would be available, and could be used to place area
lights at finite positions. Placing the light sources at fi-
nite positions causes the shadow boundaries to approach
a finite point. In comparison, the shadow boundaries of
directional area lights are parallel to each other.

References

[1] Thomas Annen et al. Convolution shadow maps. In
Proceedings of the 18th Eurographics conference on
Rendering Techniques, pages 51–60. Eurographics
Association, 2007.

[2] Thomas Annen et al. Real-time, all-frequency shad-
ows in dynamic scenes. In ACM transactions on
graphics (TOG), volume 27, page 34. ACM, 2008.

[3] Kenneth E Batcher. Sorting networks and their ap-
plications. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, pages 307–
314. ACM, 1968.

[4] Paul Debevec. A median cut algorithm for light
probe sampling. In ACM SIGGRAPH 2008 classes,
page 33. ACM, 2008.

(a) MSSM4 LB (b) MSSM4 UB (c) MSSM4 LB (d) MSSM4 UB

(e) MSSM6 LB (f) MSSM6 UB (g) MSSM6 LB (h) MSSM6 UB

Figure 7: Comparison of upper (UB) and lower (LB)
bound of zavg(p) with MSSM4 and MSSM6.

[5] Randima Fernando. Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches, page 35. ACM,
2005.

[6] James T Kajiya. The rendering equation. In ACM
Siggraph Computer Graphics, volume 20, pages
143–150. ACM, 1986.

[7] NVIDIA. Linux Graphics Debugger. https:
//developer.nvidia.com/linux-
graphics-debugger. (visited on 09/28/2016).

[8] Christoph Peters. How to solve a cubic equation, re-
visited. http://www.momentsingraphics.
de/?p=105, 2016. (visited on 09/28/2016).

[9] Christoph Peters et al. Beyond hard shadows: mo-
ment shadow maps for single scattering, soft shad-
ows and translucent occluders. In Proceedings of
the 20th ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, pages 159–170. ACM,
2016.

[10] Christoph Peters and Reinhard Klein. Moment
shadow mapping. In Proceedings of the 19th Sympo-
sium on Interactive 3D Graphics and Games, pages
7–14. ACM, 2015.

[11] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed radiance transfer for real-time rendering
in dynamic, low-frequency lighting environments. In
ACM Transactions on Graphics (TOG), volume 21,
pages 527–536. ACM, 2002.

[12] Kuntee Viriyothai and Paul Debevec. Variance min-
imization light probe sampling. In SIGGRAPH’09:
Posters, page 92. ACM, 2009.

[13] Lance Williams. Casting curved shadows on curved
surfaces. In ACM Siggraph Computer Graphics, vol-
ume 12, pages 270–274. ACM, 1978.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


