
Real-Time 2.5D Fluid Dynamics Simulation Using GPGPU

Žiga Leber ∗

Supervised by: Niko Lukač †

Laboratory for Geometric Modeling and Multimedia Algorithms
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova ulica 17, SI-2000 Maribor, Slovenia

Abstract

Realistic depiction of fluids has always presented a chal-
lenge in the modern entertainment industry, partially
owing to the fact that the Navier-Stokes equations for
fluid dynamics are notorious for being highly computa-
tionally intensive. As a solution, a simple approxima-
tive 2.5D fluid dynamics model is proposed based on
Shallow Water Equations and Continuous Cellular Au-
tomata. In combination with the computational abilities
of the modern CUDA-enabled graphics cards, the simu-
lation with the proposed model coupled with rendering,
can be performed in real-time. The method was tested
on high-resolution digital terrain models, where visually
convincing results were achieved; additionally, the sim-
ulation scales well with the input size. The CUDA-based
approach achieved average speedups of 5.5 and 1.7 times
in comparison to the single and multi-core CPU imple-
mentations, respectively.

Keywords: Fluid dynamics, Shallow Water Equations,
Continuous Cellular Automata, CUDA, GPGPU

1 Introduction

The audience has grown accustomed to perpetual in-
crease of realism in computer graphics, which has put
the entertainment industry under increasing pressure to
depict accurately the phenomena that have been tradi-
tionally neglected due to high complexity. Fluid flow,
with its ever-changing irregular shapes and computation-
ally intensive methods of simulation, is definitely one of
those. Consequently, this has sparked an increased inter-
est in physically-based fluid simulation.

Fluid flow is governed by a system of equations which
describe its three fundamental properties:

1. Conservation of mass,
2. Conservation of momentum,
3. Conservation of energy.

The formulation of equations depends on the frame of
reference that was selected upon derivation [14].

Following the Lagrangian approach, the fluid is mod-
elled as a particle system. The particles are described

∗ziga.leber@um.si
†niko.lukac@um.si

in terms of positions and velocities. The method simpli-
fies interactions with irregular boundaries and between
multiple fluids. However there are difficulties with the
surface reconstruction and rendering. Although particle-
based methods cannot achieve the same level of detail
as Eulerian, they are computationally less expensive. A
popular method used for simulation of such systems is
Smoothed Particle Hydrodynamics (SPH) [14]. It is de-
fined with a smoothing kernel used for interpolating the
physical properties of the fluid from neighbouring parti-
cles. This approach was used in the work of [12], where
they used SPH to model the Shallow Water Equations
(SWE) on arbitrary terrain slopes. Additionally, the sur-
face of the fluid can be rendered in real-time [14].

The Eulerian methods model the fluid as a grid and
follow the flow inside the cells. The state is stored inside
the node of each cell. The more advanced configurations
use staggered grids [6], where the velocity is stored in-
stead at the grid cells’ faces. The equations can be solved
using different methods; the most common are the fi-
nite difference, finite elements and finite volume meth-
ods [14]. A pivotal work in this area was done by Stam
et al. [13], which first introduced an unconditionally sta-
ble numerical solver. It is based on a semi-Lagrangian
method for advection and implicit method for viscosity
and pressure terms. However, the method cannot model
fluids with free boundaries [13]. In [4] Dong et al. used
an adaptive SWE solver which regulates the level of de-
tail based on the distance to the viewpoint and the ve-
locity gradient. The technique enables dynamic grid re-
finement of areas that are of interest to the viewer, thus
increasing the perceived resolution without raising the
computational costs.

Another option is to model the fluid based on its mi-
croscopic properties as is done with the Lattice Boltz-
mann Method (LBM). The method is a simple kinetic
model governed by the Boltzmann equation, which,
when averaged, obeys the microscopic properties of the
Navier-Stokes equation. The method is at an advantage
over conventional methods when dealing with complex
boundaries, microscopic interactions such as multiphase
flows and wetting on solid surfaces. Additionally, it can
be parallelized easily [14].

The SWE are derived by depth integrating the full
Navier-Stokes equations. This simplifies the mathemat-
ical formulation of the equations vastly, since the pres-
sure distribution can be assumed to be hydrostatic. The

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

limitation of the formulation is that, for the equations
to hold, the horizontal scale of the flow must be much
larger than the vertical dimension [16, 2]. The simplifi-
cation turns the equations from 3D to 2.5D, which lowers
the time and space complexity of the simulation, which
is a good compromise if the limitations are acceptable.
Nonetheless, there are various phenomena that the equa-
tions are capable of simulating without much loss of de-
tail. The equations are especially suitable for simulating
flows of surface water, such as rivers, tides, dam breaks
and tsunamis. In spite of the name, they can also be
used to simulate flows unrelated to water, they have been
applied successfully in simulation of the atmosphere in
weather forecasting and landslide models [16].

In this paper, an Eulerian model was developed
for physically-based simulation of incompressible fluid
flows based on SWE solved using a Finite Volume
Method (FVM) in combination with the local Lax-
Friedrich discretization. The wetting/drying problem
was solved using a Continuous Cellular Automata
(CCA). The method is simple to implement and easily
parallelizable. It was implemented in three variants, for
a single core CPU, a multi-threaded CPU, and for the
Compute Unified Device Architecture (CUDA) platform
on the GPU. All implementations were tested on differ-
ent problems and the results compared. There was a sub-
stantial speedup using the GPU implementation, which
shows the method scales well with added computational
resources.

This paper is organised as follows: In the next Sec-
tion we present the used methodology, which is divided
into a description of the used methods and the way they
were parallelized on the GPU. In Section 3 we present
the obtained results and we compare the performance on
different hardware. The paper is concluded in Section 4.

2 Methodology

In this section, first follows the explanation of the theo-
retical background and presentation of both components,
and then the specifics of the implementation on the GPU.

2.1 Theoretical Background

The proposed method for fluid simulation consists of a
numerical solver of SWE and CCA. Both components
work on a 2.5D grid, which means that the state of the
computation is represented in the form of a discretized
scalar field. Considering that each cell contains the aver-
age height in that region, there exists a one-to-one map-
ping to a surface in 3D space. The computational do-
main of the method extends over the entire grid. The
model works by alternating both methods, first an itera-
tion of the CCA is run, which is followed by the numer-
ical solver, if the height of the free surface is above zero.
If that is not the case the step is skipped. The process is
repeated until convergence. The following subsections
explain each of the components.

2.1.1 Shallow Water Equations

The 2D Shallow Water Equations [3, 15] can be written
as the following system of partial differential equations:

∂U
∂ t

+
∂F(U)

∂x
+

∂G(U)

∂y
= S, (1)

in which U contains the conservative variables, F and G
contain the flux terms in the vertical and the horizontal
directions, respectively, and S is the source term.

U =

η

hu
hv

, F =

 hu
hu2 + 1

2 gh2

huv

, G =

 hv
huv

hv2 + 1
2 gh2

,
(2)

where h is the depth of the fluid, η = h+ z is the eleva-
tion of the free surface from a fixed reference point, and
z is the elevation of the bottom boundary. The parameter
g represents the acceleration due to gravity, u and v are
the horizontal and vertical components of the depth av-
eraged velocity. The source term represents the effects
of the hill slope and the friction at the bottom boundary:

S =

 0
gηS0x−ghS f x
gηS0y−ghS f y

, (3)

where S0 is the hill slope gradient defined as:

S0x =−
∂ z
∂x

, S0y =−
∂ z
∂y

. (4)

S f is the friction defined by the Manning formula [15],
parametrized by the roughness coefficient a:

S f x =
a2u
√

u2 + v2

h4/3
, S f y =

a2v
√

u2 + v2

h4/3
. (5)

The equations are solved using the FVM [11, 8].
Firstly, the problem domain is decomposed into sub-
domains, called Control Volumes (CV). As the proposed
method is based on a 2.5D grid, the most natural decom-
position is to assign a CV to each cell, with the nodes
positioned at the centre (cell-oriented arrangement) [11].
The nodes represent the location where the unknown
variables are calculated. Control volumes in this case
are actually surfaces, owing to the fact that the govern-
ing equations are two-dimensional; however, the term
volume is used because of the established nomenclature.
Secondly, the integral balance equations have to be spec-
ified for each CV. The Shallow Water Equations, thus,
have to be rewritten in the integral form:

∂

∂ t

∫
Ω

UdΩ+
∫

Ω

(
∂F
∂x

+
∂G
∂y

)
dΩ =

∫
Ω

SdΩ, (6)

where Ω represents the surface of the CV. Using Green’s
theorem, the surface integral of the flux can be written as
the flux through the cell boundaries [3, 15]:

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

∂

∂ t

∫
Ω

UdΩ+
∮

∂Ω

(Fdy−Gdx) =
∫

Ω

SdΩ. (7)

Thirdly, the integrals have to be approximated numer-
ically. Conservative and source terms are integrated us-
ing the midpoint rule, the flux is calculated separately for
each edge of the cells and the time derivative is approxi-
mated using the forward Euler time-stepping scheme [8]:

Un+1
i, j −Un

i, j

∆t
+

1
Ωi, j

(Fn
i+ 1

2 , j
∆y−Fn

i− 1
2 , j

∆y+

Gn
i, j+ 1

2
∆x−Gn

i, j− 1
2
∆x) = Si, j,

(8)

where n is the number of the current iteration, i and j are
the cell indices, Ωi, j = ∆x∆y is the area of the cell, and
Ui, j are the averaged values of the conservative variables,
inside the cell. The equation can be rewritten as:

Un+1
i, j = Un

i, j−
∆t
∆x

(Fn
i+ 1

2 , j
−Fn

i− 1
2 , j

)−

∆t
∆y

(Gn
i, j+ 1

2
−Gn

i, j− 1
2
)+∆tSi, j.

(9)

The fluxes at the boundaries are calculated according
to the local Lax-Friedrichs method [8]. Eq. (10) calcu-
lates the flux at the edges.

Fn
i+ 1

2 , j
=

1
2

[
F(Un

i, j)+F(Un
i+1, j)

]
− 1

2
|λ~x

i+ 1
2 , j
|(Un

i+1, j−Un
i, j),

Fn
i− 1

2 , j
=

1
2

[
F(Un

i, j)+F(Un
i−1, j)

]
− 1

2
|λ~x

i− 1
2 , j
|(Un

i, j−Un
i−1, j),

Gn
i, j+ 1

2
=

1
2

[
G(Un

i, j)+G(Un
i, j+1)

]
− 1

2
|λ~y

i, j+ 1
2
|(Un

i, j+1−Un
i, j),

Gn
i, j− 1

2
=

1
2

[
G(Un

i, j)+G(Un
i, j−1)

]
− 1

2
|λ~y

i, j− 1
2
|(Un

i, j−Un
i, j−1),

(10)

where |λ~x| and |λ~y| represent the speed at the boundary,
which is defined as the largest absolute eigenvalue of the
Jacobian matrix. The Jacobian matrices are evaluated for
the vertical and the horizontal flow [10] as:

A =
∂F
∂U

, B =
∂G
∂U

, (11)

The calculation for the horizontal direction produces:

A =

 0 1 0
gh−u2 2u 0

uv v u

, (12)

which is decomposed, giving us the eigenvalues repre-
senting the characteristic speeds:

λ
~x
1 = u+

√
gh, λ

~x
2 = u−

√
gh, λ

~x
3 = u. (13)

The one with the largest absolute value in the hor-
izontal direction is, therefore, |λ~x| = |u|+

√
gh. The

calculation in the vertical direction is similar and gives

|λ~y|= |v|+
√

gh. The average of the heights and the av-
erage of the velocities on each side are used to get the
value of |λ~x| or |λ~y| at the boundary.

The time-step is determined dynamically according
to the Courant-Friedrichs-Lewy (CFL) condition [8],
which is necessary for the convergence of the numerical
scheme:

∆t = c ·min
(

∆x
|λ~x|

,
∆y
|λ~y|

)
, (14)

where c is the Courant number. For this particular
scheme c has to be at least smaller than 1 to avoid os-
cillations. No special treatment is given to the source
term. The slope of the bottom surface is discretized us-
ing the central difference and the term is then calculated
using the information provided by the 2.5D grid.

2.1.2 Continuous Cellular Automata

CCA is an extension of cellular automata, where the
valid states can take continuous values. Generally, it is
represented as a 4-tuple (Z,S,N, f), where Z is the lat-
tice, S is a set of cell states, N is the finite neighbourhood,
and f is the transition function. In this paper, the CCA
model lattice is a finite 2.5D grid. The state is a real
value that represents the height of the fluid. Each cell in
the 2.5D grid adheres to the transition rules that define
the fluid propagation from the given cell to the cells in
the 8-neighbourhood. The movement of the fluid from
the (i, j)-th cell in the r-th direction is governed by the
slopes of the surrounding terrain. Therefore, the force
f~ri, j applied to the fluid inside the cell is estimated with
the Newtonian mechanics [7]:

f~ri, j = mi, jg · sin(φ~ri, j), (15)

where mi, j is the mass of the fluid within the cell, g is
the gravitational force, and φ~ri, j is the angle of the slope.
The slope angles are calculated based on the heights of
the neighbouring cells:

φ
~r
i, j = atan(ηi, j−η

~r
i, j). (16)

The amount of fluid that is distributed to the neigh-
bouring cells depends on the forces f~ri, j acting in each di-
rection. The fraction of the distributed fluid d~ri, j is, thus:

d~ri, j =
mi, jg · sin(φ~ri, j)

∑
8
k=0

(
mi, jg · sin(φ~ki, j)

) =
sin(φ~ri, j)

∑
8
k=0 sin(φ~ki, j)

, (17)

where the mass and the gravity cancel out. The total
fluid that can be distributed in a given direction depends
on the height of the neighbouring cells. The fluid cannot
move uphill; therefore, only the fluid that is above the
surrounding fluid surface can be moved. The height of
the transferable fluid in each direction η̂~r

i, j is given by:

ĥ~ri, j = max(0,ηi, j−η
~r
i, j). (18)

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

⟨⟨⟨kernel1⟩⟩⟩

Characteristic velocity

⟨⟨⟨kernel2⟩⟩⟩

Timestep

⟨⟨⟨kernel3⟩⟩⟩

CCA

⟨⟨⟨kernel4⟩⟩⟩

SWE

CPU

Clear results

CPU

Transfer results

Start

Figure 1: Workflow of the proposed CUDA-based im-
plementation for parallel SWE+CCA computation.

In the case that the transferable fluid is negative, no
fluid is transferred. The height of the fluid distributed in
each direction ∆~ri, j is calculated as:

∆
~r
i, j = min

(
µ ĥ~ri, j, hi, j

d~ri, j
w~r

)
, (19)

where µ represents a damping factor, which limits the
amount of the fluid that is distributed, hi, j is the height of
the fluid at the current position, and w~r is the weight for
the given direction. The weight is used because the fluid,
which moved in a diagonal direction, has to cover more
ground. The value of w~r for the orthogonal directions is
1 and

√
2 for the diagonal.

After the new heights are calculated using the CCA
propagation rule in Eq. (19), the fluid propagates to the
neighbouring cells. This process is repeated until con-
vergence, when the height of the transferable fluid is neg-
ligible or the simulation is stopped by hand.

2.2 CUDA Implementation

CUDA is a parallel computing platform and a program-
ming model which enables the use of GPU for gen-
eral purpose computing. The CUDA enabled device is
composed of two main components: The global mem-
ory which stores the data that is being processed and
Streaming Multiprocessors (SM) that perform the com-
putations. Each SM contains its own caches, shared

memory, control units, execution pipelines and multiple
CUDA cores which execute instructions in unison. The
methods implementation is composed of serial code that
is executed on a CPU and parallel code, composed of
kernels, executed on different threads on a GPU. Threads
are grouped into blocks, which are, in turn, grouped into
a grid [9, 17].

The proposed CUDA implementation of the simula-
tion uses four kernels as can be seen in Figure 1. Before
running the simulation loop, the model of the terrain and
the initial height are loaded into the global memory of
the GPU. The velocities in both direction are initialized
to zero. The constants are loaded into the fast read-only
constant memory. In each iteration of the loop, the re-
sults are first set to zero, because the CCA uses these
arrays as accumulators. When the first kernel is run,
it computes the characteristic velocities and their max-
imum. Next, the time-step is calculated by using a small
kernel which only executes once. Then follow the main
parts of the simulation, where the third kernel executes
a round of CCA and the fourth kernel applies the SWE
solver.

Algorithm 1 CCA
1: procedure KERNEL3(i, j, m, h, u, v, h′, Θ, Π)
2: if OUTOFBOUNDS(i, j) then
3: return
4: end if
5: if hi j < Θ or MAGNITUDE(u, v) < Π then
6: h′i j← h′i j +hi j
7: return
8: end if
9: slopes←{0 . . .0}

10: ts← 0
11: for k← 0 to 8 do
12: r← neighbourhoodk
13: s← SLOPE(i, j, r, m, h)
14: if s≥ 0 and hi j > 0 then
15: slopesk← s
16: ts← ts+ s
17: end if
18: end for
19: height le f t = hi j
20: for k← 0 to 8 do
21: r1,r2← neighbourhoodk
22: s← slopesk
23: th← TRANSFERABLE(i, j, r, m, h)
24: if th > 0 then
25: t← TRANSFER(i, j, th, h, s, ts)
26: h′i+r1, j+r2

← h′i+r1, j+r2
+ t

27: height le f t← height le f t− t
28: end if
29: end for
30: h′i j←max(0,height le f t)
31: end procedure

The pseudo-code CCA is presented in the Algorithm
1. Input parameters to the kernel are i and j, which rep-
resent the cell indices, m which represents the model of

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

the terrain, h which is the height of the fluid, u and v
which are the vertical and horizontal velocity, h′ the out-
put height, and Θ which represents the minimal allowed
height in the cell. It is structured as follows: First it is
checked to see if the indices of the thread are inside the
bounds of the input array (lines 1–4). Then it is ensured
that the cell contains enough mass (at least Θ) and that
it is moving with high enough velocity (lines 5–8). The
slopes of the neighbouring cells and their total are cal-
culated (lines 9–18). This information is then used to
distribute a specific amount of mass (lines 19–29). For
each neighbour the maximum amount of mass that can
be transferred without it moving uphill is determined,
then if this value is positive a portion of this mass, de-
termined by the steepness of the slope, is moved to the
neighbouring cell. Mass that was left over is added at the
same position in the results array.

Algorithm 2 SWE
1: procedure KERNEL4(i, j, m, h, u, v, λ , ∆x, ∆y, ε ,

g, a, h′, u′, v′)
2: if OUTOFBOUNDS(i, j) or hi j < ε then
3: return
4: end if
5: Fh

1 ,F
h
2 ,G

h
1,G

h
2← FLUXH(i, j, m, h, u, v, λ)

6: Fuh
1 ,Fuh

2 ,Guh
1 ,Guh

2 ← FLUXUH(i, j, m, h, u, v, λ)
7: Fvh

1 ,Fvh
2 ,Gvh

1 ,Gvh
2 ← FLUXVH(i, j, m, h, u, v, λ)

8: S1,S2← SOURCE(i, j, m, h, u, v, ∆x, ∆y, g, a)

9: h′i j← hi j−∆x · (Fh
2 −Fh

1)−∆y · (Gh
2−Gh

1)
10: if h′i j 6= 0 then

11:
u′i j← ui j− (∆x · (Fuh

2 −Fuh
1)+

∆y · (Gvh
2 −Gvh

1))/h′i j +S1

12:
v′i j← vi j− (∆x · (Fuh

2 −Fuh
1)+

∆y · (Guh
2 −Guh

1))/h′i j +S2
13: end if
14: end procedure

The Algorithm 2, presents the pseudo-code SWE.
First six input parameters are the same as the ones for the
CCA kernel, then follows λ which represents the char-
acteristic velocities, ∆x and ∆y represent the cell width
and height, ε is the minimum amount of height for the
SWE to work, g is the gravity, a is the Manning coef-
ficient, h′, u′, v′ represent the output variables. First it
is checked that indices are not out of bounds and that
enough fluid is present in the current cell for the SWE
solver to run (lines 2–4). Then the fluxes and the source
term are calculated (lines 5–8). The resulting height is
calculated in line 9, which is then checked to see if it is
positive, because it is used as a denominator in lines 11
and 12, where the resulting velocities are calculated.

At the end of the simulation loop the results are copied
into the input arrays and the resulting height is trans-
ferred back to main memory and then rendered on the
screen. After the loop is terminated all allocated mem-
ory is freed.

Table 1: Run time of 1000 iterations using different im-
plementations in relation to the lateral size of a square
grid in terms of number of cells.

Lateral size GPU [s] CPU8 [s] CPU1 [s]

1000 66.2506 129.606 382.163
500 17.1727 33.3051 104.594
333 8.45965 13.9932 46.7858
250 4.72635 7.81743 26.4550
200 3.16506 4.92756 17.1912
166 2.38993 3.54443 11.7735
142 1.82582 2.76242 8.26432
125 1.41043 2.04936 6.35155
111 1.07874 1.60661 4.97288
100 0.97592 1.15555 3.90313

3 Results

To demonstrate the performance of the method two typ-
ical hypothetical problems where solved. These prob-
lems are challenging because they feature large discon-
tinuances and formation of bores, which cannot be han-
dled by naive discretization techniques.

First is the partial dam break problem, which was
studied by Fennema et al [5]. The geometry of the prob-
lem consist of a basin, which is divided by a dam in the
middle as is shown in Figure 2. The basin is filled with
water at both ends. The initial water level in the dammed
compartment is twice as high as the tail water. It is as-
sumed that a portion of the dam breaks instantaneously,
which means there is a large discontinuity in the initial
condition. As the water flows though the breach it forms
a large wave which propagates and spreads laterally. The
water is exchanged between the compartments, until the
water levels eventually equalize [5, 1]. The obtained re-
sults are in agreement with the results obtained in [5, 1].
For the sake of clarity, the walls are not included in the
figure, the reminder of the dam is represented as empty
space between the two compartments. The red colour
signifies the amount of liquid missing from the dammed
area and the blue colour represents the amount of liquid
that has accumulated in the tail water.

The second problem is a circular version of the dam
break problem. A column of water is bounded by a cir-
cular dam from the surrounding water. Upon dam fail-
ure, the dam is instantly removed completely. The body
of water spreads radially, until it reflects of the domain
boundary [1]. The simulated fluid forms recognisable
patterns, which can be seen in Figure 3. The results con-
cede with the results obtained in [1]. The blue colour
represents the amount the fluid that is protruding above
the surrounding water level, while the red colour repre-
sents the amount it depresses below it.

The method was also tested in a more natural test case.
It was used to simulate a landslide flowing along a digital
terrain model (DTM) derived from high resolution Light
Detection and Ranging (LiDAR) data. Initially a coni-
cal region of terrain was allotted to the landslide, which

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

a) b)

c) d)

e) f)

Figure 2: Results of the partial dam break simulation.
Times: a) 0.0095, b) 0.0442, c) 0.0838, d) 0.1568, e)
0.2308, f) 0.3086

a) b)

c) d)

e) f)

Figure 3: Results of circular dam break simulation.
Times: a) 0.0077, b) 0.0227, c) 0.0752, d) 0.1126, e)
0.1501, f) 0.2249.

Table 2: Parameters used in the simulation.
Parameter Value

ε 1.0
g 9.81
a 0.25
c 0.5
µ 0.1
Θ 0.1
Π 0.1

then moved along the slope due to the effects of the grav-
ity. This thoroughly tested the CCA solution to the wet-
ting/drying problem, since the landslide initially propa-
gates on the dry surface. The results of the simulation
are presented in Figure 4. In the Figure 4a the landslide
has just moved from the starting point, in Figure 4b it
has flowed into the valley, until having reached the edge
of the DTM in the Figure 4c. The results are reasonable
considering the model is lacking a rheological model, a
crucial part of the more advanced landslide models.

The calculated worst-case time complexity of each it-
eration is O(n2). It was determined as follows: The
worst-case time complexity of the SWE solver is O(2 ·
wh). In each iteration, the solver passes all cells; given
that the w and h represent the width and height of the
computation domain, the number of all cells is wh. The
algorithm makes two passes, first the field of |λ | is cal-
culated, so that the time-step can be evaluated in accor-
dance with the CFL condition. The second pass updates
the conservative variables. The time complexity of the
CCA is O(8 ·wh), all cells are passed and at each posi-
tion the transfer function is evaluated in eight directions.
The total worst-case time complexity of each iteration is,
thus, O(2 ·wh+ 8 ·wh). Neglecting the small constant,
the estimated time-complexity is O(wh). Considering
that the width and the height are usually proportional,
the final worst-case complexity is indeed O(n2). The
theoretical derivation is also corroborated by the exper-
imental measurements in Figure 5. As can be observed
the general trend is distinctly parabolic for all considered
implementations.

The performance of different implementations was
evaluated on the dam break test case. Ten different grid
sizes where used, created by down-sampling the original
mesh of size 1000× 1000 grid-points. The parameters
that was used in simulation are listed in Table 2. The
GPU implementation used enough blocks, each of size
22× 22, to cover all cells in the grid. The program was
ran on a computer with a Intel Core i7 3610QM proces-
sor and NVIDIA GeForce GT 650M graphics card. The
results are presented in Table 1 and show clearly that the
GPU and multi-threaded implementations offer a large
improvement over the single core version, as can be seen
in Figure 5. The GPU method performs the best overall,
with an average speedup of 1.7 over the multi-threaded
version and a 5.5 speedup over the single core version.
As can be seen in Figures 6 and 7, the increase in per-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

0m

3m

-3m
a) b) c)

Figure 4: Results of landslide simulation on natural terrain. Iterations: a) 100, b) 1000, c) 3000

formance is raising with the size of the grid, however
the variations are minor. Due to the two-dimensional na-
ture of the problem, the time complexity cannot be below
O(n2); therefore, the size of the grid eventually becomes
too large to be simulated in real-time. Nonetheless, rea-
sonable mesh sizes have the average iteration time below
70 ms, which is fast enough for human perception to ex-
perience it as fluid motion.

The method is relatively stable and the total amount
of fluid doesn’t fluctuate greatly. Before the simulation
of the dam break test case with a 500× 500 grid the to-
tal height of the fluid equalled 354856 and 354855 after
1000 iterations. The average deviation from the starting
height during the simulation was 148.80 and 321.19 the
maximum, which is 0.04 % and 0.09 % of the initial total
height respectively. The minor fluctuations are probably
due to round of errors or other insignificant numerical
instabilities.

4 Conclusion

A novel method for simulating fluid flow has been devel-
oped based on a FVM using Lax-Friedrich discretization
of SWE and a CCA as a solution of the wetting/drying
problem. The method performs in real-time for reason-
able mesh sizes and lends itself well to parallelization.
It was implemented on the CPU and the GPU using the
CUDA platform. The GPU implementation achieved a
speedup of 5.5 and 1.7 over the single core and multi-
threaded implementation respectively. Lower process-
ing times mean that even larger grids can be simulated
in real-time. It was tested successfully on two classical
test cases, the partial and circular dam break problem.
The results agree with the ones found in the literature.
Additionally, the method was evaluated in a more natu-
ral test case by simulating a landslide on a DTM. In all
tests the method produced plausible and visually appeal-
ing results.

References

[1] K. Anastasiou and C. T. Chan. Solution of the 2D
shallow water equations using the finite volume
method on unstructured triangular meshes. Inter-
national Journal for Numerical Methods in Fluids,
24(11):1225–1245, 1997.

 0

 100

 200

 300

 400

 500

 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
[s

]

Lateral size

GPU
CPU8
CPU1

Figure 5: Run time in relation to the lateral size of the
square mesh for different implementation.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 100 200 300 400 500 600 700 800 900 1000

Sp
ee

du
p

Lateral size

Figure 6: Speedup gained using the GPU instead of the
single core CPU implementation.

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

 100 200 300 400 500 600 700 800 900 1000

Sp
ee

du
p

Lateral size

Figure 7: Speedup gained using the GPU instead of the
multi-threaded CPU implementation.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

[2] J. D. Anderson and J. Wendt. Computational fluid
dynamics, volume 206. Springer, 1995.

[3] S. F. Bradford and B. F. Sanders. Finite-Volume
Model for Shallow-Water Flooding of Arbitrary
Topography. Journal of Hydraulic Engineering,
128(3):289–298, 2002.

[4] L. Dong, L. You-Quan, B. Kai, et al. Real-time
shallow water simulation on terrain. In Proceedings
of the 9th ACM SIGGRAPH Conference on Virtual-
Reality Continuum and its Applications in Industry,
pages 331–338. ACM, 2010.

[5] R. J. Fennema and M. H. Chaudhry. Explicit meth-
ods for 2-d transient free surface flows. Journal of
Hydraulic Engineering, 116(8):1013–1034, 1990.

[6] H. P. Gunawan. Numerical simulation of shallow
water equations and related models. Theses, Uni-
versité Paris-Est, January 2015.

[7] D. Kleppner and R. Kolenkow. An introduction to
mechanics. Cambridge University Press, 2013.

[8] R. J. LeVeque. Finite Volume Methods for Hy-
perbolic Problems. Cambridge University Press,
54:258, 2002.

[9] E. Lindholm, J. Nickolls, S. Oberman, et al. Nvidia
tesla: a unified graphics and computing architec-
ture. IEEE Micro, 28(2):39–55, March 2008.

[10] T. H. Pulliam. The Euler Equations. Notes:33,
1994.

[11] M. Schäfer. Computational engineering: introduc-
tion to numerical methods. Springer, 2006.

[12] B. Solenthaler, P. Bucher, N. Chentanez, et al. SPH
Based Shallow Water Simulation. In J. Bender, K.
Erleben, and E. Galin, editors, Workshop in Vir-
tual Reality Interactions and Physical Simulation
”VRIPHYS” (2011). The Eurographics Associa-
tion, 2011.

[13] J. Stam. Stable fluids. In Proceedings of the 26th
Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’99, pages 121–
128, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co., 1999.

[14] J. Tan and X. Yang. Physically-based fluid anima-
tion: a survey. Science in China Series F: Informa-
tion Sciences, 52(5):723–740, 2009.

[15] H. R. Vosoughifar, H. R. Jalalpour, M. Tabandeh,
et al. A high resolution finite volume method for
dam break simulation. SASTech, m:1–9, 2011.

[16] C. B. Vreugdenhil. Numerical methods for shallow
water flow. VKI, Computational Fluid Dynamics,
Volume 1 48 p (SEE N90-27989 22-34), 1, 1990.

[17] C. Woolley. Cuda overview. Developer Tech-
nology Group, NVIDIA Corporation. Avail-
able online: http://www. cc. gatech. edu/˜
vetter/keeneland/tutorial-2011-04-14/02-cuda-
overview. pdf (accessed on 10 September 2015),
2011.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

