
Patch-Based Recursive Catmull-Clark Subdivision on the GPU

Daniel Mlakar
Supervised by: Markus Steinberger

Graz University of Technology
Graz / Austria

Figure 1: The prominent Killeroo model (left) subdivided
with Catmul-Clark subdivision to level 5 (right).

Abstract

Catmull-Clark subdivision is an algorithm that takes a
coarse mesh of a 3D model as input and outputs a smooth
mesh. It has many different applications from level of de-
tail rendering to feature film production. Starting from
the coarse control mesh a series of increasingly smooth
meshes is produced in an iterative way until some stopping
criterion is met. Each level of subdivision depends on the
previous level or, to be more precise, the positions of the
new vertices are determined by its local neighborhood in
the previous mesh. This property leads to patch-based ap-
proaches. In most applications Catmull-Clark subdivision
is a preprocessing step and therefore has to be fast. In this
work we present a parallel patch-based approach which
utilizes the GPU. Patch based approaches have the advan-
tage of enabling good possibilities for parallelization such
as subdividing multiple patches to different levels at the
same time. We also do not have to do preprocessing steps
as some other approaches do. We use a dynamic schedul-
ing framework which enables us to write different proce-
dures to subdivide different types of patches. Therefore
we can optimize each procedure’s code by taking away the
generality which would be needed if patches with differ-
ent topology are subdivided by the same procedure. Good
performance is reached by using matrix multiplication for
the subdivision of regular quad-patches.

Keywords: Catmull, Clark, Subdivision, Patch, GPU,
GPGPU

1 Introduction

Mesh subdivision is the process of refining a coarse con-
trol mesh into a dense and smooth mesh representation as
shown in Figure 1. Catmull-Clark Subdivision is an itera-
tive process where a smoother mesh is created by adding
new vertices to faces and edges of the model and adapting
the positions of existing vertices. Repeating these steps
yields a smoother mesh representation each time. There is
a need to do the necessary computations as fast as possi-
ble because Catmull-Clark subdivision is finding its way
to real time applications such as computer games. It can
for example be used to refine the model step by step while
the camera gets closer. Using a coarser representation for
models which are farther away can increase the frame-
rate drastically. Only a few years ago Catmull-Clark was
mainly used in offline rendering such as feature film ren-
dering. In offline rendering the performance is also impor-
tant but not crucial. Another scenario which requires fast
subdivision is animation. Animating a subdivided model
requires a large number of vertices to be moved. It is more
comfortable to animate the control mesh and do the sub-
division afterwards. We want interactive rendering of the
fully subdivided model to give the animator instant feed-
back. It is an advantage to do the computations directly
on the GPU because storing a subdivided model requires
vast amounts of disk space and loading it to the GPU to be
rendered would require large amounts of data to be trans-
ferred. Section 2 discusses related work. Section 3 pro-
vides an introduction to Catmull-Clark. We used a patch-
based approach as it facilitates parallelization across dif-
ferent levels. It is possible to subdivide multiple patches
to different levels in parallel because a patch holds all the
information needed for subdivision. In Section 4 we de-
scribe the dynamic GPU scheduling framework we use for
our implementation. We elucidate the importance of a fast
way to subdivide regular quad-patches in Section 5.4. Sec-
tion 6 compares our approach to OpenSubdiv [1]. We con-
clude the paper in Section 7.

2 Related Work

Subdivision surfaces have received a lot of attention in the
last few years. One of the most prominent and impor-
tant algorithms is Catmull-Clark subdivision [2]. There

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

are plenty approaches on fast implementations which use
approximations instead of precise computations. Loop and
Schaefer [3] used bicubic patches to approximate the sub-
division surface which can be evaluated efficiently using
hardware-supported tessellation. There are also adaptive
subdivision approaches such as done by Nießner et al. [4].
They only subdivide in the neighborhood of features like
creases and generate in each step bicubic patches which
are directly rendered using hardware tessellation. An ap-
proach of fast direct evaluation was presented by Stam [5].
In this paper he first showed that Catmull-Clark subdivi-
sion surfaces can be evaluated without explicit subdivi-
sion.

Patney et al. [6] developed a data structure that can be
used to do the subdivision in parallel on the GPU while
maintaining the mesh structure, thus without the use of
patches. They perform adaptive subdivision. Adaptive
subdivision produces cracks and T-junctions and avoiding
or repairing them needs additional computations. A real-
time GPU kernel was presented by Shiue et al. [7]. They
used the OpenGL Shading Language to do the subdivision
and they rely on fragment meshes. A fragment mesh is a
vertex with two layers of surrounding faces. If there are
irregular vertices that are not surrounded by at least one
layer of regular vertices they have to perform one step of
subdivision on the CPU to make the mesh fulfil this re-
quirement.

Many approaches have to do some kind of preprocess-
ing as the aforementioned one. In comparison we avoid all
preprocessing in our work. Our algorithm supports subdi-
vision of meshes with arbitrary vertex valence and arbi-
trary face sizes but without boundaries. We use a GPU
scheduling framework and a patch-based approach to do
the computation of the Catmull-Clark subdivision scheme
to perform uniform subdivision while maintaining good
performance without the use of hardware tessellation.

3 Patch-Based Catmull-Clark Subdi-
vision

Different strategies on how to apply the Catmull-Clark al-
gorithm to a control mesh exist. The main difference in
the approaches is the representation of the mesh. While
it is possible to do the subdivision on the connected mesh
we decided to extract a patch for each face in the mesh and
perform the subdivision on these patches. A patch consists
of the face to be subdivided and one layer of surrounding
faces. We distinguish between three types of patches. The
first and most general one is the arbitrary patch. It can con-
sist of any number of faces which may have an arbitrary
number of vertices with an arbitrary valence. The second
type is the irregular quad-patch which is an arbitrary patch
with the restriction that all faces are quads. The third and
most common type is the regular quad-patch which is an
irregular quad-patch with the additional property that each

vertex that is not on the border of the patch has a valence
of four.

3.1 Subdividing a Patch

Subdividing a patch involves four steps which are depicted
in Figures 2b to 2e:

(a) patch to subdivide (b) facepoints

(c) edgepoints (d) vertexpoints

(e) connect (f) new patch

Figure 2: Steps to subdivide a patch using the Catmull-
Clark algorithm

Starting with an arbitrary patch in Figure 2a, we add
facepoints to the patch as shown in Figure 2b. The face-
point f pi of the i-th face is calculated by taking the average
of the face’s vertices v j as denoted in Equation 1.

f pi =
1
n

n

∑
j=1

v j (1)

In the next step (Figure 2c) an edgepoint is added to
each edge that is adjacent to one of the center vertices. The
edgepoint epi of the i-th edge is calculated by averaging
the two facepoints f pl and f pm of the neighboring faces
and the two endpoints v j and vk of the edge.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

epi =
1
4
(v j + vk + f pl + f pm) (2)

In Figure 2d the adjustment of the positions of the cen-
ter vertices is shown. They are moved to the positions cal-
culated by Equation 3, where F and R are the average of
adjacent facepoints and edge-midpoints respectively. vold
is the old position of the vertexpoint and n is its valence.

vnew =
F +2R+(n−1)vold

n
(3)

Subsequent the newly created facepoints are connected
to all edgepoints of the corresponding face edges. This is
depicted in Figure 2e. Now the patch center is subdivided
to a new level. The number of new faces that emerge in
a step of subdivision is equal to the number of vertices
of the subdivided face. As we subdivided a quad, we get
four new faces. If we want to do another step of subdivi-
sion, we build a new patch for each of them. The patch for
the top left face is shown in red in Figure 2f. The Patch-
Based Catmull-Clark subdivision has some useful prop-
erties. First of all, the subdivision of a face exclusively
yields quads. Each patch center after the first subdivi-
sion step consists of one vertex from the control mesh, two
edgepoints and one facepoint. Each patch holds all the in-
formation needed to subdivide the center completely inde-
pendent of other patches. Therefore, we have more possi-
bilities for parallelization. We are able to subdivide multi-
ple patches to different levels at the same time. Therefore,
it is also possible to divide different regions of a model to
different levels. Subdividing regions around features to a
higher level than regular regions might be useful.

4 Whippletree

Whippletree [8] is a dynamic GPU scheduling framework
which enables us to write procedures which take a specific
input and provide a specific output. These procedures can
be executed by a specified number of threads in parallel.
The input data can be split into small work packages which
can then be processed independently in different instances
of the procedures. Each procedure has an input queue.
A scheduler decides when a new instance of a procedure
is launched with an element from its queue. Which pro-
cedures and how many of them are executed at the same
time is decided with respect to using the GPU resources
efficiently. The general structure of the GPU program is
shown in Figure 3.

The inserter puts the patches created from the con-
trol mesh into the queue for the ”Subdivide”-procedure.
This procedure is capable of subdividing patches with any
topology. As it has to handle many different types of
patches it has to be very general. This procedure exclu-
sively outputs quad-patches. The ”Subdivide Non-Regular
Quad Patch”-procedure handles these quad-patches. If an
input element is a regular-quad patch it gets forwarded to

Inserter

Subdivide
Subdivide

Non-Regular
Quad Patch

Subdivide
Regular

Quad Patch

Memory

Arbitrary
Patch

Quad-Patch
Regular

Quad-Patch

Non-
Regular

Quad-Patch

Regular
Quad-Patch

Face

Figure 3: Structure of the subdivision program

the ”Subdivide Regular Quad Patch”-procedure. Design-
ing this procedure in an efficient way is important because
in later iterations the majority of patches are regular quad-
patches. The objective was to make this procedure fast
while using a minimum of resources. The stopping crite-
rion is reaching a specified level of subdivision.

5 Implementation

In this Section we describe how shapes are represented in
our implementation and how this representation is created.
We also discuss the three types of patches we distinguish
in our implementation. For each type we give a description
of their properties and state some implementation specific
details such as the data structure used to represent them.

5.1 Shape Representation

We now discuss how a shape is represented in our imple-
mentation. After loading the model, a patchtable for the
shape is created. A patchtable is a structure holding an
array of patches and a variable that stores the size of that
array which is equal to the number of faces in the control
mesh. For the patches we used the data structure for ar-
bitrary patches which we describe in Section 5.2. This is
necessary, as the input patches can be of any type. In this
way we can keep the part which fills the input queues of
the procedures very simple as it only has to enqueue one
type of patch to one procedure. Performing the first iter-
ation with the least efficient procedure has no big impact
on the runtime because the number of patches grows ex-
ponentially with the subdivision level. Therefore the num-
ber of patches for the first iteration is really just a small
fraction of the total number of patches that have to be sub-
divided. The generation of the patchtable and therefore of
the patches is done entirely on the CPU because it is only
done once and therefore does not affect the per frame per-
formance. Each patch is created iteratively by first adding
the face for which we want to create a patch, the patch cen-
ter, and then adding one layer of neighboring faces. Neigh-
bouring faces are found using a map which stores the ad-
jacent faces for each vertex. Using this map we can iterate

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

over the vertices of the already added patch center and add
those adjacent faces of the vertex to the patch which were
not already added before. When the patchtable is complete
we can upload it to the GPU to perform the subdivison.
We do not consider the creation of the patchtable a prepro-
cessing step, because we neither change the input 3D mesh
nor generate new information in this process. Therefore,
the patchtable is just a different representation of the same
data.

5.2 Arbitrary Patches

Properties This type of patch is the most general one.
It can have any number of faces with a random number
of vertices. This makes it hard to handle them efficiently.
An example for an arbitrary patch is depicted in Figure 4a.
Because of the quad-generation property of the Catmull-
Clark subdivision algorithm only the first iteration of sub-
division has to be done using this procedure. The num-
ber of patches grows exponentially with the subdivision
level and therefore the performance of the subdivision pro-
cedure which handles these patches does not carry much
weight when subdividing to higher levels. When just sub-
dividing to level one there are sufficiently few patches that
the model can still be subdivided fast.

Data Structure The data structure used to represent an
arbitrary patch is fairly large in size. This is because we
can not make any assumptions about the topology. The
structure consists of three arrays. The first one holds the
vertex positions. The second array consists of multiple in-
dices for each face into the first array. The third array holds
an offset into the index array for each face. Additionally
there are variables which store the sizes of the aforemen-
tioned arrays as well as variables for the current level and
the desired level of subdivision. Figure 4b shows the ar-
rays which represent the patch in Figure 4a. The indices
for the last faces are omitted here.

5.3 Non-Regular Quad-Patches

Properties This type of patch only consists of quads
which takes away some generality compared to arbitrary
patches. We still have to take into account that they can
be comprised of an arbitrary number of faces. When we
get this type of patch from subdividing an arbitrary patch
they all look as shown in Figure 5a. We can see that they
only differ in the valence of the two vertices colored in red.
We will discuss this property in more detail in Section 5.4.
Figure 5b shows an example for a non-regular quad-patch
with valences three and five. If both of this valences were
four this would be a regular quad-patch.

Data Structure Non-regular quad patches are repre-
sented by two arrays. The first one holds the vertex po-
sitions. The second array is comprised of four indices into

(a) Arbitrary patch

...v6v5v4v3v2v1v0

...4013210

...24211613940

vertices

indices

face
offset

v13v12v11v10v9v8v7

...761265

29

v14

(b) Arrays which represent the arbitrary patch

Figure 4: An arbitrary patch and the corresponding data
structure

the first array for each face. We can omit the face offset ar-
ray as we know that all the faces in such a patch have to be
quads. There is a variable that holds the number of faces
and two variables for current and desired level. Figure 6a
shows an example non-regular quad-patch which emerges
when creating the patch for a face of a cube. The arrays
which represent this patch are depicted in Figure 6b. The
indices for the last two faces are omitted here.

5.4 Regular Quad-Patches

Properties A regular quad-patch only consisting of
quads where each vertex of the center has a valence of
four. In this Section we analyze why a majority of patches
will be regular quad-patches in later iterations of Catmull-
Clark subdivision and thereby emphasize the importance
of subdividing this type of patch in a fast and resource in-
dulging way.

First we state why the majority of the patches in the
process of subdividing are regular quad-patches. The first
reason is that subdividing a regular quad-patch yields four
new regular quad-patches. Second, also non-regular quad-
patches produce at least two regular quad-patches in each
iteration, starting from the second one. This fact is de-
picted in Figure 7.

The left part of Figure 7 shows a patch center after the
first iteration. On the right we have the four centers of the
patches which emerge from subdividing the face on the
left. To identify the faces which are the center of a regular
quad-patch, we only have to check the valence of the faces

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Non-regular quad-
patch with unknown
valence vertices in red

(b) Non-regular quad-
patch with example va-
lences three and five

Figure 5: All non-regular quad-patches share some prop-
erties but differ in the valence of the vertices marked in
red

(a) Non-regular quad-patch

v7v6v5v4v3v2v1v0

...4013210

vertices

indices ...65125

(b) Arrays which represent the non-regular quad-patch

Figure 6: A non-regular quad-patch and the corresponding
data structure

vertices as we already know that we only have quads. All
edgepoints have a valence of four because they are always
connected to the two facepoints of the bordering faces and
to the two vertices of the edge. We also know that the
facepoint in the center has a valence of four because we
subdivided a quad. So the faces on the top right and on
the bottom left are regular quad-patches. We do not know
if the remaining two are also regular because the valence
of the vertex point did not change from the control mesh.
Also the valence of the facepoint in the bottom right corner
of the bottom right face depends on the number of vertices
of the face in the control mesh. Readers may notice that
each of the four new faces has at most one vertex with a
possible valence not equal to four. Due to this fact, the
subdivision yields at least three regular quad patches after
the third iteration.

Figure 7: Left: center after first subdivision; Right: centers
after second subdivision

Subdivision In Section 5.4 we stressed the importance
to subdivide regular quad-patches efficiently. We now dis-
cuss how this can be done. Figure 8a shows a regular quad-
patch which we want to subdivide. Because of the sym-
metry of regular quad patches it is sufficient to explain the
approach for the neighborhood of v0 which is depicted in
Figure 8b. If we want to subdivide this region, we have to
calculate eight vertices, which are shown as rectangles in
Figure 8c and subsequently we have to move the original
vertex v0.

(a) Regular quad-patch (b) Neighbourhood of v0

(c) Unknown vertices

Figure 8: Unknowns in the neighborhood of a vertex in a
regular quad-patch

As described in Section 3, edgepoints and facepoints
can be calculated by averaging some known vertices.
Also, the new position of the vertexpoint v0 is a weighted
average of edgepoints, facepoints and the old vertex posi-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

tion. Therefore, we can express this computations as dot
product of two vectors as in Equations 4 to 6.

If we now define the two vectors

V = (v0 e0 e1 e2 e3 f 0 f 1 f 2 f 3)T

V ′ = (v0′ e0′ e1′ e2′ e3′ f 0′ f 1′ f 2′ f 3′)T (7)

we can find a matrix

S =
1

16



9 3
2

3
2

3
2

3
2

1
4

1
4

1
4

1
4

6 6 1 0 1 1 0 0 1
6 1 6 1 0 1 1 0 0
6 0 1 6 1 0 1 1 0
6 1 0 1 6 0 0 1 1
4 4 4 0 0 4 0 0 0
4 0 4 4 0 0 4 0 0
4 0 0 4 4 0 0 4 0
4 4 0 0 4 0 0 0 4


(8)

such that

V ′ = S ·V . (9)

Now the subdivision of the neighborhood around v0 is
reduced to this matrix multiplication. This was proposed
by Doo and Sabin [9] and the matrix for regular vertices
was given by Halstead et al. [10]. To subdivide the whole
patch we also have to do this computation for the neigh-
borhoods of the three remaining vertices v1, v2 and v3.
Matrix multiplications can be paralleled very efficiently
and are therefore well suited to be computed on the GPU.

Data Structure All regular quad-patches have the same
topology. They consist of exactly sixteen vertices in nine
quad-faces. Therefore, the data structure used to represent
them is small. It only consists of one array holding the ver-
tex positions. We can omit any index or face offset array as
we know which vertex is connected to other vertices and
which vertices are part of a specific face. Figure 9a shows
a regular quad patch. The vertex array representing a reg-
ular quad-patch is shown in Figure 9b. The fact that we
do not need any additional information to subdivide this
type of patch is a big advantage because the structure is
small in size and therefore the overall memory bandwidth
requirements are reduced.

6 Results

In this Section we discuss our results and compare our ap-
proach to OpenSubdiv, which is a well known subdivision
API by Pixar. All measurements were captured on a sys-
tem with an Intel i5 4690k, 8GB of RAM and a Nvidia
GTX 980.

6.1 OpenSubdiv

We want to shortly describe how we used OpenSubdiv as
there are many different ways how to subdivide a model
using this API.

The first step is to refine the topology. This does not in-
clude variables associated with vertices such as positions
or normals but only connection informations. With the re-
fined topology a stencil table is created. This stencil table
holds weights which are later used to refine the vertex data.
Now we can create a CUDA evaluator using this stencil ta-
ble. The steps up to this point are considered preprocess-
ing, preparing data for efficient subdivision on the GPU.
We can now hand coarse vertex data, e.g. positions, to the
CUDA evaluator which then calculates the refined data for
each vertex in the refined topology.

6.2 Ours vs. OpenSubdiv

For the evaluation we used two simple models namely a
cube and a pyramid and also some prominent models that
are often used to evaluate subdivision approaches such as
the Killeroo, Bigguy and Monsterfrog. Figure 10 shows
their control mesh and the subdivided model.

Table 1 shows the timings we measured for the per
frame computations. We can see that our approach per-
forms pretty similar to OpenSubdiv. The values for our ap-
proach also include the subdivision of the topology which
is one of two preprocessing steps in OpenSubdiv. The sec-
ond preprocessing step is the calculation of the stencils.
This timings can also be found in table 1. They take pretty
long dependent on the complexity of the model because
they are executed on the CPU and not on the GPU. It turns
out that our approach seems to be also well suited for ap-
plications where models with frequently changing topolo-
gies have to be subdivided. This is the case in the 3D
modeling process if we want to show the artist a live pre-
view of the subdivided mesh. Using OpenSubdiv in such a
scenario would require doing the preprocessing each time
the topology changes which would result in low frame-
rates. If the changes in topology are known beforehand it
would be possible to precompute the refined topology and
the stencil table and store it for later use but that would
use big amounts of disk space depending on the number
of different topologies.

Ours OpenSubdiv
PFE sum PFE RT CST

Cube lvl 9 2.081 1551.687 2.519 141.680 1407.488
Pyramid lvl 10 4.664 2838.814 3.543 391.277 2443.994
Killeroo lvl 4 1.805 1757.346 1.656 84.056 1671.634
Bigguy lvl 4 0.710 683.239 0.583 32.243 650.413
Bigguy lvl 5 2.005 2889.844 2.216 135.861 2751.767
Monsterfrog lvl 4 0.718 601.266 0.561 28.992 571.713
Monsterfrog lvl 5 1.904 2519.056 2.198 119.914 2396.944

Table 1: Mean of measurements taken over fifteen runs in
[ms]. Per Frame Evaluations (PFE), RefineTopology (RT),
ComputeSencilTable (CST)

While stencil tables have obvious advantages, using

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

f 0′ =
(1

4
1
4

1
4

1
4

)
· (v0 e0 e1 f 0)T (4)

e0′ =
(3

8
3
8

1
16

1
16

1
16

1
16

)
· (v0 e0 e1 e3 f 0 f 3)T (5)

v0′ =
(9

16
3

32
3
32

3
32

3
32

1
64

1
64

1
64

1
64

)
· (v0 e0 e1 e2 e3 f 0 f 1 f 2 f 3)T (6)

(a) Regular quad-patch

...v6v5v4v3v2v1v0vertices ...v12v11v10v9v8v7 v15v14v13

(b) Array which represents the regular quad-patch

Figure 9: A regular quad-patch and the corresponding data
structure

them to perform view dependent subdivision causes some
problems. Therefore, OpenSubdiv also supports patchta-
bles. In the adaptive subdivision case only non-regular
patches are subdivided using a stencil table as in the uni-
form case but the subdivision of the regular quad-patches
is done using a patchtable and tessellation shaders. Regu-
lar patches are stored as b-spline patches in the patchtable.
Each of them is converted into a bezier patch in a con-
trol tessellation shader and then evaluated in the evalua-
tion tessellation shader. To get a setup comparable to the
one used in OpenSubdiv we adapted our approach such
that only non-regular patches are subdivided further and
regular patch centers are written to the GPU memory after
the first subdivision step. In OpenSubdiv we used a stencil
table to do adaptive refinement where also only the non-
regular patches are subdivided without the use of tessella-
tion shaders. With this experiment we wanted to compare
the performance in subdividing non-regular patches to get
an estimate of the fraction of computation time spent on
this type of patch when subdividing the whole model. The
result of this experiment can be found in 2. Screen space
or view dependent subdivision in OpenSubdiv is also done
using the described setup. With our approach it would be
possible to do screen space subdivision without the use of
shaders as we can dynamically decide which patches we
have to subdivide further and which ones we want to ren-
der.

As we do all the computations in software on the GPU

(a) Killeroo at level 0 (b) Killeroo at level 4

(c) Bigguy at level 0 (d) Bigguy at level 5

(e) Monsterfrog at level 0 (f) Monsterfrog at level 5

Figure 10: Models used for performance evaluations

and refrain from using hardware tessellation we can over-
come some limitations: Using displacement mapping on a
large input patch could lead to under tessellated displace-
ments. The opposite is also possible: the displacement is
sufficiently subdivided but the surrounding is over tessel-
lated. Our approach not only allows for dynamic adaption
of the tessellation levels for different patches but also for
regions within a patch, in contrast to OpenGL where inner
and outer tessellation levels have to be specified, which
determine the amount of tessellation for the whole patch.
This can also be used in other applications than displace-
ment mapping where it is desirable and beneficial that
different regions are subdivided to different levels. Us-
ing OpenGL the maximum number of output vertices is
also limited which restricts the maximum tessellation level
while the maximum amount of tessellation in our approach
is only limited by the available GPU memory. Using a
software approach for the mesh subdivision increases the
flexibility in general and therefore makes it more versatile.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Ours OpenSubdiv
PFE sum PFE RT CST

Cube lvl 9 0.274 11.684 0.008 0.470 11.206
Pyramid lvl 10 0.313 11.358 0.007 0.522 10.829
Killeroo lvl 4 0.635 84.918 0.044 16.211 68.663
Bigguy lvl 4 0.318 42.853 0.025 7.319 35.509
Bigguy lvl 5 0.364 55.378 0.025 9.634 45.719
Monsterfrog lvl 4 0.320 51.857 0.030 9.074 42.753
Monsterfrog lvl 5 0.376 67.980 0.030 12.439 55.511

Table 2: Mean of measurements taken over fifteen runs in
[ms] in the adaptive case. Per Frame Evaluations (PFE),
RefineTopology (RT), ComputeSencilTable (CST)

7 Conclusion and Future Work

Subdivision has a wide range of applications. A com-
monly used algorithm is the Catmull-Clark algorithm.
There are many promising approaches to use subdivision
in real time applications which increases the necessity of
fast Catmull-Clark subdivision. We achieved good per-
formance by implementing a patch-based approach which
was parallelized on a GPU. A dynamic scheduling frame-
work was used, which helps utilizing the GPU resources
efficiently. We compared our approach to OpenSubdiv,
which spends significant time on data preprocessing -
approximately 1000× the time it requires for the process-
ing in each frame. Even though our approach does not
require any preprocessing, our per frame processing times
are comparable. This fact also points towards the abil-
ity of our approach to handle topology changes efficiently
and to be integrated into a modeling software. We focused
on optimizing the procedure which handles regular quad-
patches because they form the majority of patches. This
was done by expressing the subdivision of such a patch as
a single matrix multiplication. This approach could also be
used to subdivide non-regular quad-patches by adjusting
the used matrices. In that way the performance could be
improved but presumably not by far. Our approach could
be extended to perform screen space subdivision because
it is possible to dynamically decide the subdivision level
of each face independently.

References

[1] Pixar. http://graphics.pixar.com/opensubdiv/. ac-
cessed: 05.02.2017.

[2] E. Catmull and J. Clark. Seminal graphics. chap-
ter Recursively Generated B-spline Surfaces on Ar-
bitrary Topological Meshes, pages 183–188. ACM,
New York, NY, USA, 1998.

[3] Charles Loop and Scott Schaefer. Approximating
Catmull-Clark Subdivision Surfaces with Bicubic

Patches. ACM Trans. Graph., 27(1):8:1–8:11, March
2008.

[4] Matthias Nießner, Charles Loop, Mark Meyer, and
Tony Derose. Feature-adaptive GPU Rendering of
Catmull-Clark Subdivision Surfaces. ACM Trans.
Graph., 31(1):6:1–6:11, February 2012.

[5] Jos Stam. Exact Evaluation of Catmull-Clark Sub-
division Surfaces at Arbitrary Parameter Values. In
Proceedings of the 25th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’98, pages 395–404, New York, NY, USA,
1998. ACM.

[6] Anjul Patney, Mohamed S. Ebeida, and John D.
Owens. Parallel View-dependent Tessellation of
Catmull-Clark Subdivision Surfaces. In Proceedings
of the Conference on High Performance Graphics
2009, HPG ’09, pages 99–108, New York, NY, USA,
2009. ACM.

[7] Le-Jeng Shiue, Ian Jones, and Jörg Peters. A Real-
time GPU Subdivision Kernel. In ACM SIGGRAPH
2005 Papers, SIGGRAPH ’05, pages 1010–1015,
New York, NY, USA, 2005. ACM.

[8] Markus Steinberger, Michael Kenzel, Pedro
Boechat, Bernhard Kerbl, Mark Dokter, and Dieter
Schmalstieg. Whippletree: Task-based Scheduling
of Dynamic Workloads on the GPU. ACM Trans.
Graph., 33(6):228:1–228:11, November 2014.

[9] D. Doo and M. Sabin. Seminal graphics. chapter
Behaviour of Recursive Division Surfaces Near Ex-
traordinary Points, pages 177–181. ACM, New York,
NY, USA, 1998.

[10] Mark Halstead, Michael Kass, and Tony DeRose. Ef-
ficient, Fair Interpolation Using Catmull-Clark Sur-
faces. In Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques,
SIGGRAPH ’93, pages 35–44, New York, NY, USA,
1993. ACM.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

