
Image Reconstruction from Spatially Non-uniform Samples

Adam Siekawa∗

Supervised by: Radoslaw Mantiuk†

Institute of Computer Science
West Pomeranian University of Technology

Szczecin / Poland

Abstract

We evaluate methods for image reconstruction from spa-
tially non-uniform samples. Such distribution is charac-
teristic for location of cones on the human retina. Trans-
formation from spatially non-uniform samples to raster
image in Cartesian coordinates is obligatory step for the
retinal rendering techniques. We present two methods in
our work, one using triangle mesh renderer and second us-
ing image post processing operation called a push-pull. In
the first method vertices are placed at corresponding sam-
ple positions in screen space, which allows us to perform
fast triangular interpolation of values on a GPU. Second
method is based on image pyramid processing which fil-
ters out blank pixels during downsampling and fills them
during upsampling. We evaluate the performance and
quality of reconstruction using sample data generated by
the GPU-accelerated ray tracer. As it is work in progress,
a map of the non-uniform sample distribution and a map
of triangles are generated off-line during preprocessing.

Keywords: non-uniform image sampling, image recon-
struction, gaze-dependent rendering, gaze-contingent dis-
play, retinal rendering

1 Introduction

Contemporary rendering algorithms use sampling in the
regular Cartesian coordinate system. Since rendered im-
age is supposed to be displayed on a flat and rectangular
display it is an intuitive choice for sample distribution for
raster image.

With increasing popularity of Virtual Reality (VR) and
the Head Mounted Displays (HMD), a non-uniform sam-
ple distribution schemas are applicable. For example,
in the most modern HMDs image is rendered using bar-
rel distortion, which is required for visualizing the image
properly on such devices.

Eye tracking becomes a popular way of aiding rendering
systems by rendering scenes with varying sample density.
This sampling schema uses lower density of samples in
the parafoveal region of vision [4, 9, 8], which can be non-

∗asiekawa@wi.zut.edu.pl
†rmantiuk@wi.zut.edu.pl

linearly reduced due to decreasing the contrast sensitivity
with the eccentricity on the human retina. Lower sensitiv-
ity is caused by non-uniform distribution of light receptor
cells, called cones. On the fovea there are 150 thousand
cones per square millimetre, but for eccentricity equal to
10 degrees this number falls down to below 10 thousand.

Although models of rendering for peripheral regions are
not yet matured [7], we can assume that it is possible to
significantly reduce number of samples needed to render
these regions. This approach can also be supported by
limitations of HMDs, in which lenses optical distortions
introduce even more distortion in the rendered light field.

In this work we evaluate two different reconstruction
techniques that transform rendered image samples from
the non-uniform, so called retinal space to the Cartesian
space of the displayed image. In the first method ver-
tices are placed at corresponding sample positions in the
screen space. Then, the triangulated mesh is rendered
using GPU. Second method is based on image pyramid
processing which filters out blank pixels during downsam-
pling and filling them during upsampling.

We evaluate reconstruction accuracy by comparing re-
constructed image to the image where each pixel is ren-
dered using complete sampling in the Cartesian space. We
test the performance of the evaluated reconstruction tech-
niques. Both tests are conducted for varying number of the
non-uniformly distributed samples, showing accuracy and
performance trade-off for the real-time rendering scenar-
ios.

Ray tracing is a popular rendering method which sim-
ulates light behaviour. It works by sending rays into the
scene that are collecting radiance. Ray tracing allows to
render accurate reflection, refractions and shadows, which
results in photo realistic images. Unfortunately, due to
slow performance it finds most of the usage in cinematog-
raphy and CAD visualisations. Since this method can pro-
duce physically accurate images it becomes more appeal-
ing as a rendering solution for VR applications.

Our work aims to significantly improve ray tracing per-
formance by using fast non-uniform sample distribution.
Such combination can lead to better, more realistic image
synthesis on HMDs without visible image degradation at
the same rendering time needed per frame.

In Section 2, we show how the rendering techniques

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



can benefit from the non-uniform sampling approach. In
Section 3 we describe the evaluated reconstruction tech-
niques; triangle mesh rendering and a push-pull technique.
In Section 4 we present a testbed and stimuli used for ex-
periments we performed, compare results obtained in both
reconstruction techniques and evaluate their performance.
The paper ends with conclusions and future work in sec-
tion 5.

2 Background

A number of approaches have been proposed in the lit-
erature that reconstruct a signal from a reduced number
of samples. In this work we omit these studies and fo-
cus on the real time reconstruction techniques. For the
high quality approaches that, however, require a signifi-
cant time overhead and can not be used in the real time
graphics application, we refer the reader to Yaroslavsky et
al. work [11].

Adaptive image sampling. Non-uniform image sam-
pling can be used in the rendering techniques, in which
one wants to reduce sampling in the regions that contribute
less to the output image. For instance, coarser sampling
can be applied in low frequency regions of the scene. The
opposite approach with increased number of samples can
be used to enhance complex objects. Such approach is ap-
plied in the adaptive anti-aliasing techniques [2].

As proposed in Gunter et al. [4], if the viewing direction
of the observer are known, the number of rendered pixels
can be significantly reduced by rendering three low resolu-
tion images at different fields of view instead of one high
resolution image. Images rendered for the wider view an-
gle are then magnified and combined with lower field of
view images. The later ones depict details in the area sur-
rounding the gaze position. This technique reduces sam-
pling rate for the peripheral regions but keeps the deterio-
ration of image quality invisible for observer.

Another technique proposed by Stengel et al. [9] aims
to reduce shading complexity in the deferred shading tech-
nique [2]. The spatial sampling is constant for the whole
image but the material shaders are simplified for periph-
eral pixels. This technique reduces the shading time up to
80%.

The gaze-dependent ray tracing was proposed in [8]. A
varying size of pixels allows to reduce sampling for image
areas distant from the observer’s gaze location. The sizes
of individual pixels are determined by gaze-dependent
contrast sensitivity function, which models how human
contrast sensitivity is decreased with eccentricity [5].

Ultra-wide displays. Recent advancements in display
technology resulted in wide spread of Virtual Reality hard-
ware. Unfortunately Head Mounted Devices (HMDs) re-
quire high resolution displays in order to produce accept-
able visual experience. Consequently, VR system require

high end GPUs to provide acceptable graphics quality.
Additionally, images displayed on such devices need to
be transformed by applying barrel distortion as shown in
Fig. 1. Such transformation suggests that less samples
might be needed on more distorted regions of the image.
For these regions a non-uniform sampling is a natural way
to speed-up rendering.

Figure 1: Example of the rendering required by the HMD
stereo display. Generated for Oculus DK2.

3 Reconstruction Techniques

Ray tracing is not limited to the uniform sampling schema,
because one has a full control over the ray origin and di-
rection. This allows to render images based on the non-
uniform sampling algorithms with a negligible impact on
the rendering performance. Since the ray tracing perfor-
mance depends on the number of traced rays, one can
choose a sample distribution that reduces the overall num-
ber of rays. However, the next step is required to transform
the spatially non-uniform samples to the Cartesian coordi-
nates, which can be displayed on the screen. The goal is to
use a reconstruction technique, which introduces the low-
est possible distortions to the original signal.

In this Section we present two reconstruction techniques
that address this problem: push-pull and triangle mesh
rendering. The input in both techniques is the RGB image
with pixels located in random positions (see Fig. 2). We
pre-compute this spatially non-uniform pixel distribution
using the quasi-random locations (see Section 4.1) but, in
future work, we plan to implement a distribution, which
mimics the sampling schema of the human eye.

3.1 Push-Pull Technique

The push-pull technique has been introduced by Gortler et
al. [3]. We simplified the implementation of this technique
to achieve better performance.

In the push phase, the mipmapping is applied. The im-
age is downsampled by a factor of two and stored for later
use. During downsampling, four corresponding pixels are
averaged but the pixels that are marked as empty (do not

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Part of the RGB image consisting of the quasi-
randomly distributed samples. The black areas indicate a
lack of pixels.

contain a sample value computed by ray tracer) are ig-
nored (see Fig. 3, left). If all four pixels are marked as
empty, we also mark destination pixel in the lower level as
empty and set its color to 0. This operation is performed
recursively taking newly calculated image as input until
we cannot halve image size anymore. It is recommended
to ensure that image dimensions are a powers of two - this
can be achieved by inserting missing columns and rows to
the image. It is assumed that at the lowest level there are
no empty pixels.

Figure 3: The push-pull technique.

The pull phase starts from the second level from the
coarsest level of the pyramid. If pixel in this image is
marked as empty, it takes color of the corresponding pixel
from the coarser level of the pyramid (see Fig. 3, right).
This procedure is repeated by climbing to the top of the
pyramid.

Source 1 presents details of the push-pull technique.
This listing shows two OpenCL kernel functions executed
in subsequent steps of the algorithm. Push function takes
as input mask image containing information on the sam-
ple locations and image containing colors of the samples.
Results are stored in maskL and imageL variables, that cor-
responds to mask and image from the coarser level of the
pyramid. w and h are the total width and height of the in-
put image, respectively. Pixels from the input image are
averaged using 2x2 block filter but the pixel color is added
only if the sample exists at the corresponding mask loca-

tion (lines 15-19). If there is a valid sample in 2x2 pixel
block, the averaged color is stored in the coarser level of
the pyramid and 1 is written into lower level mask. Other-
wise, the mask is set to 0.

Pull function uses the results generated by the Push
function. If there are no valid sample in a given pixel lo-
cation, the pixel color is copied from the coarser level. For
the valid samples the pixel color is not modified.

Source 1: OpenCL implementation of the push-pull algo-
rithm.

1 __kernel void Push(__read_only image2d_t mask,
__read_only image2d_t image, __write_only
image2d_t maskL, __write_only image2d_t
imageL, int w, int h)

2 {
3 const int2 txc = { get_global_id(0),

get_global_id(1) };
4 int idx = txc.x * h + txc.y;
5 float4 sum = 0.0f;
6 int numSamples = 0;
7 for (int x = 0; x <= 1; x++)
8 {
9 for (int y = 0; y <= 1; y++)

10 {
11 int2 tn;
12 tn.x = txc.x * 2 + x;
13 tn.y = txc.y * 2 + y;
14 float4 m = read_imagef(mask, sampler,

tn);
15 if (m.x > 0.0f)
16 {
17 numSamples += 1;
18 sum += read_imagef(image, sampler, tn);
19 }
20 }
21 }
22 if (numSamples != 0)
23 {
24 write_imagef(imageL, txc, ans /

(float4)numSamples);
25 write_imagef(maskL, txc, (float4)1.0f);
26 }
27 else
28 {
29 write_imagef(maskL, txc, (float4)0.0f);
30 }
31 }
32
33 __kernel void Pull(__read_only image2d_t mask,

__write_only image2d_t image, __read_only
image2d_t maskL, __read_only image2d_t
imageL, int width, int height)

34 {
35 const int2 txc = { get_global_id(0),

get_global_id(1) };
36 int idx = txc.x * height + txc.y;
37 float4 m = read_imagef(mask, sampler, txc);
38 if (m.x > 0)
39 return;
40 write_imagef(image, txc, read_imagef(imageL,

sampler, txc / 2));
41 }

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



3.2 Triangle Mesh Rendering

The non-uniform map of samples can be triangulated and
rendered using the standard forward rendering accelerated
by GPU. The triangulation is a time consuming process,
which is hard to execute in real time. However, as it is
done in our work, the triangle mesh can be computed in the
preprocessing and then used for the ray tracing rendering.

In our implementation a map of samples (presented e.g.
in Fig. 5) is converted to the triangle mesh using the Delau-
nay triangulation technique. Each sample in the map be-
comes a vertex in the mesh (see example in Fig. 4). This
mesh is pre-computed and read from file during initial-
ization of our real-time ray tracer. Ray tracer traces rays
passing through the vertices of the mesh and stores col-
ors of the corresponding pixels. During the actual triangle
mesh rendering, colors inside the triangles are interpolated
in screen space using the barycentric interpolation.

Figure 4: Example of the triangle mesh generated for the
non-uniform distribution of 6590 samples.

4 Accuracy and performance tests

In this section we evaluate accuracy of the proposed im-
age reconstruction techniques. The reconstructed images
are compared to the reference image rendered for the reg-
ular Cartesian sampling. We also discuss the performance
benefits resulting from the non-uniform sampling.

4.1 Testbed and stimuli

The tests have been performed using three non-uniform
sample maps containing 10%, 30% and 50% of the pixels
of the original image (see Fig. 5). This reference image
had a resolution of 1920x1080 pixels.

Pixel
coverage

Push-Pull Mesh
rendering

10% 0.9879 0.9830
30% 0.9965 0.9946
50% 0.9983 0.9954

Table 1: SSIM indices.

To evaluate the accuracy of the reconstruction, we
compared the images after reconstruction to the refer-
ence images using the Structural Similarity Index Metric
(SSIM) [10] and computed the global SSIM index. SSIM
predicts perceptual difference between images, i.e. the dif-
ference between the images, which have been discovered
by average human observer. SSIM can replace the time
consuming perceptual experiments, in which people have
to manually indicate differences between the images.

The sample maps were generated off-line using Matlab
script. We generated quasi-random distribution of sam-
ples, which mimics the fovea-oriented distribution of the
photoreceptors on the human retina. The samples are dis-
tributed with non-linear density, which depends on the ec-
centricity (distance from the fovea). In our implementa-
tion, the sample maps were exported to the binary image,
in which 1 indicates that there is a sample at a given loca-
tion, and 0 that there was not rendered sample. The Matlab
script also generated a triangle mesh based on the distribu-
tion of the samples. The mesh was normalized to fit the
OpenGL screen coordinates.

Custom renderer

We tested the reconstruction techniques in a custom GPU-
based ray tracer implemented using OpenCL library (ver-
sion 1.2). The primary rays were generated for individ-
ual samples in the sample map (or vertices in the triangle
mesh). The renderer uses the Radeon Rays library [1] for
calculation of the ray triangle intersection and computa-
tion of the output color. The color values were directly
stored in the OpenGL Frame Buffer Object and the miss-
ing pixels were computed using the push-pull technique.
Alternatively, the colors of the samples per each vertex
were stored in the Vertex Buffer Object and this triangle
mesh was used to render the image using OpenGL shader.

Test scene consisted of a single omnidirectional light
source and Lambertian or Phong-based [6] BRDFs (see
examples in Fig. 7).

4.2 Accuracy tests

In Fig. 7 the reference image is presented along with its re-
constructions based on 10% of the samples. The push-pull
technique generates the jagged edges, which are especially
noticeable in regions distant from the fovea (see Fig. 7,
center). The mesh rendering produces similar artefacts but
they are less visible due to barycentric interpolation (see

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: Maps with non-uniformly distributed samples.
From top to bottom: 10%, 30% and 50% of a number of
pixels from the original image.

Fig. 7, bottom). However, the interpolation introduces dis-
tortions and blurs the image.

Tab. 1 presents the SSIM indices for both push-pull and
mesh reconstruction techniques. The SSIM index values
close to 1 could indicate a negligable difference in the ap-
pearance of the reference and reconstructed images. How-
ever, the distortion maps presented in Fig. 6 depict notice-
able difference in peripheral regions of the images and at
the edges of the objects. These artefacts cause strong alias-
ing and, as we tested in a pilot study, are easily noticeable
even in the periphery.

The reconstruction generates images of higher quality
for more samples, however, it reduces the performance
(see Sect. 4.3). We assume that the aliasing caused by the
push-pull technique can be reduced by filtering the image
during the pull phase. We plan to implement the variable
size kernel to reduce the image blurring after this recon-
struction. The kernel size should depend on pyramid level,

Figure 6: The SSIM distortion maps for the push-pull (top)
and mesh rendering (bottom) reconstruction techniques.
The maps generated for reconstruction based on 10% of
samples.

i.e. for the detailed levels should be smaller than for the
coarser levels. For the mesh rendering technique a typical
anti-aliasing can be applied with the assumption that rays
originating from the less dense regions should have higher
scattering. We also plan to implement alternative shading
technique, which will use the normal vectors at mesh ver-
tices to reduce aliasing.

4.3 Performance tests

The rendering times are presented in Table 2. Our cus-
tom ray tracer renders the full frame image (1920x1080
pixels) using regular sampling in 30 ms. The rendering
times for reduced number of samples are presented in the
second column of Table 2. The reconstruction techniques
require additional overhead depicted in column 3 and 4,
which results in the total rendering speed-ups presented in
the brackets.

The push-pull performance is constant for all cases be-
cause this technique is executed in the screen space and
depends only on the image resolution. For 10% of sam-
ples the overall rendering time is reduced 5.5-times. In
this case, we achieved 8.36-times performance boost for
10% of samples.

For the mesh rendering, lower number of samples re-
duces the mesh complexity and speed-ups both the ray
tracing and the actual mesh rendering.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Percentage of samples Rendering time Push-Pull overhead Mesh rendering overhead
10% 3.4 ms 2 ms (5.5x) 0.19 ms (8.36x)
30% 9.1 ms 2 ms (2.7x) 0.675 ms (3.06x)
50% 14.8 ms 2 ms (1.78x) 1 ms (1.9x)

Table 2: Results of the performance tests. Times in milliseconds. Ray tracing time doesn’t include Push-Pull or Mesh
overhead. Values in brackets shows performance improvement against the full frame rendering.

We tested the performance of the reconstruction tech-
niques using a PC with the AMD RX 480 8GB GPU.

5 Conclusions and Future Work

In this work we introduced two methods for image re-
construction from non-uniform sample distribution. Both
methods were tested in terms of accuracy and perfor-
mance, achieving promising results. Due to reduced num-
ber of samples, rendering speed was increased by a large
degree, enabling 1080p image rendering above 60 frames
per second in all our test cases for test scene.

In the future work we plan to extend the algorithm with
more accurate cone distribution model. Another issue that
needs to be addressed is noticeable aliasing in push-pull
method. One of potential methods to solve this problem is
introduction of varying blurring kernel at each level of im-
age pyramid. In triangle mesh rendering there’s potential
for better quality in alternative algorithms for triangulating
2D sample sets. More testing needs to be done on actual
head mounted displays in order to determine effectiveness
of presented techniques.

Acknowledgments.

The project was partially funded by the Polish
National Science Centre (decision number DEC-
2013/09/B/ST6/02270).

References

[1] Advanced Micro Devices, Inc. Radeon-rays library,
version 2.0, 2016.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Hoff-
man. Real-Time Rendering 3rd Edition. A. K. Peters,
Ltd., Natick, MA, USA, 2008.

[3] Steven J Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F Cohen. The lumigraph. In
Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 43–
54. ACM, 1996.

[4] Brian Guenter, Mark Finch, Steven Drucker, Desney
Tan, and John Snyder. Foveated 3d graphics. ACM
Trans. Graph., 31(6):164:1–164:10, 2012.

[5] Eli Peli, Jian Yang, and Robert B Goldstein. Image
invariance with changes in size: The role of periph-
eral contrast thresholds. JOSA A, 8(11):1762–1774,
1991.

[6] Bui Tuong Phong. Illumination for computer gen-
erated pictures. Communications of the ACM,
18(6):311–317, 1975.

[7] Ruth Rosenholtz. What your visual system sees
where you are not looking. In Human vision and
electronic imaging, page 786510, 2011.

[8] Adam Siekawa. Gaze-dependent ray tracing. In Pro-
ceedings of Central European Seminar on Computer
Graphics (non-peer-reviewed), pages 155–160. TU
Wien, 2014.

[9] Michael Stengel and Marcus Magnor. Gaze-
contingent computational displays: Boosting per-
ceptual fidelity. IEEE Signal Processing Magazine,
33(5):139–148, 2016.

[10] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and
Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612, 2004.

[11] Leonid P Yaroslavsky, Gil Shabat, Benjamin G Sa-
lomon, Ianir A Ideses, and Barak Fishbain. Nonuni-
form sampling, image recovery from sparse data and
the discrete sampling theorem. JOSA A, 26(3):566–
575, 2009.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Example renderings (from top): reference image, image reconstructed from 10% of samples using the push-pull
technique, triangle mesh rendering for 10% of samples. Two regions were magnified to depict artifacts produced by the
reconstruction techniques.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


