
The Pacman Benchmark

Antonı́n Šmı́d∗

Supervised by: Jiřı́ Bittner

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague, CZ

Abstract

Contemporary game engines are invaluable tools for game
development. There are numerous engines available, each
of which excels in certain features. We have developed a
simple game engine benchmark using a scalable 3D reim-
plementation of the classical Pacman game.

The benchmark is designed to employ all important
game engine components such as path finding, physics,
animation, scripting, and various rendering features. We
present preliminary results of this benchmark evaluated in
the Unity game engine on different hardware platforms.

Keywords: Game Engine, Benchmark, Unity, 3D Pac-
man reimplementation

1 Introduction

Game engines are complex, multipurpose tools for the cre-
ation of games and multimedia content. They offer an en-
vironment for an efficient development, sometimes even
without the knowledge of scripting. That means that game
engines should cover many different areas of the game de-
velopment process such as rendering, physics, audio, ani-
mation, artificial intelligence, and the creation of the user
interface.

Part of the development team are usually the artists
(level designers, modelers, animators) who are unable to
work with code and their tasks require a visual environ-
ment. The team can either develop a custom environment
or licence an existing middleware solution. The choice of
the game engine in the early phase of the project is crucial.
That is why we have decided to compare two of the major
engines on the today’s market: Unity3D (version 5) and
Unreal Engine 4.

Game engines are complex tools and comparing them
is a problematic task. It is possible to realize a subjective
comparison if we have a common experience with imple-
menting the same project on both platforms or an objec-
tive comparison where we evaluate both implementations
from the perspective of measurable criteria. For compari-
son, it is important to have a project of adequate complex-
ity, which can be implemented on both platforms in a very

∗emails: smidanto@fel.cvut.cz, bittner@fel.cvut.cz

similar way. That is the task we aim to accomplish.
We have developed a simple benchmark using a scal-

able reimplementation of the classic Pacman game. The
benchmark is designed to employ all important game
engine components including various rendering features,
path finding, physics, animation, and scripting. We have
prepared three versions of the benchmark to run on differ-
ent hardware platforms. Apart from the full benchmark for
PC, we have evaluated an Android build with touch con-
trols and simplified GearVR build, to test the virtual reality
performance.

In this paper, we cover the Unity implementation and
measurement results of the benchmark. We will continue
by implementing the Unreal benchmark in the future. At
first, we briefly describe the game engine’s components
in Section 3. Then we go through the principles of the
Pacman game and explain how we use them to test the
game engine’s performance. In Section 5 we cover the
details of the benchmark implementation in Unity game
engine. Finally, in Section 6 we present the measured data.

2 Related work

The definition of the game engine itself is a complicated
issue whereas the game engine’s architecture may vary
greatly. Monolithic systems provide complete out of the
box solutions while the modular component engines [2]
may offer just API and the developer has to code all the
logic including the game loop.

Anderson et al. [2] have covered the problematics of
defining an engine and proposed a Whiteroom Bench-
mark for Game Engine Selection that compares the en-
gines according to the features. The Whiteroom demon-
strates basic gameplay features such as doors that can be
opened, player’s interaction with objects, stairs/steps, and
elevators. The benchmark is designed to use the techni-
cal features considered standard in modern games. They
have evaluated four engines: Source, Unity, Unreal, and
CryEngine and provided the implementation notes.

Another proposed engine selection methodology pro-
posed by Petridis et al. [5] empathizes the rendering fea-
tures. However, those papers do not mention any perfor-
mance measurements and we would like to include those
as well.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



3 Game engine components

Game engines are divided into several components, each
one providing specific functionality (see Fig. 1) [3]. We
will briefly go through the most important ones.

Game content
Audio

ScriptingAnimation

Rendering

Physics

Arti�cial
Intelligence

Figure 1: Game engine’s components overview

3.1 Rendering

The rendering engine is one of the most important parts
of the game engine. It accesses the graphics card API and
allows to draw 3D objects in the scene. The rendering en-
gine calculates objects positions in the camera space, ma-
terials, and lighting. It usually comes together with a num-
ber of shaders to simulate different materials. Rendering
often takes the majority of the update time. Therefore, we
focus the benchmark primarily on the rendering features.

3.2 Animation

As some of the game objects do not only move in space but
change their shape or move their parts, every game engine
needs to handle animations. These could be skeleton an-
imations (walking), shape animations (facial expressions)
or just interpolating some attributes of the game objects
(transforms, color, speed).

3.3 Physics

The physical engine simulates the physical behavior of the
objects in the game. The engine calculates movement vec-
tors and collisions between the objects. We can distin-
guish between static objects that do not move at all like
the ground and rigid bodies which have a mass, a mate-
rial with friction, which reacts to forces, falls with grav-
ity, etc. Additionally, the engine might simulate soft bod-
ies, which change their shape according to outer forces
(cloth). Although the physics simulation does not have to
be extremely accurate, it is an important part of the game
development.

3.4 Artificial intelligence

Some engines offer API to configure artificial intelligence
(AI) of the characters. Typical tasks are finding a path be-
tween two points, moving the characters along this path.
Another use case is the representation of the behavior of
AI characters, for example, using behavioral trees which

decide what the characters should do, how to react to play-
ers actions and trigger animations.

3.5 Scripting

The game engine also has to provide a way to describe the
game components behavior. We can write scripts as com-
ponents for objects so that the objects can react to player’s
impulses, interact or communicate with each other.

3.6 Audio

An important part of every game is a sound design and
music which induces the atmosphere. Game engines pro-
vide tools for playing and stopping soundtracks based on
game events. Advanced audio engines can simulate echo
in the 3D space or play spatial sound according to players
position.

4 The Pacman Benchmark

In this chapter, we will describe the Pacman game me-
chanics in the context of the tested components.

Game design is a difficult discipline [6]. One of the
well-done designs is the Pacman game which is one of the
most iconic video games of all time. It is not too com-
plex, but it still has a potential to employ many compo-
nents of the game engine. The original Pacman was an ar-
cade game developed by the Namco company 1, released
in 1980 in Japan [4]. Pacman (Fig. 2) 2 is a yellow ball
with big mouth eating little dots, also called biscuits. The
player controls the Pacman through the maze. There are
four ghosts in the maze, who are trying to catch the Pac-
man.

Figure 2: Pacman, the main character.

The game is simple to play; originally it was con-
trolled by a joystick. In this benchmark version we use
a script to move the Pacman precisely or keyboard arrows
to make the game actually playable. We have transferred
the maze into today’s graphics, using physically based
shaders. There is a physical component used for moving
the characters around. The benchmark also uses naviga-
tion AI component to manage the ghost’s movements.

1http://pacman.com/en/
2https://pixabay.com/p-151558/, CC0 Public Domain

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



4.1 Game Concept

The Pacman is an arcade game. The main yellow charac-
ter is going through the maze, eats biscuits and avoids the
ghosts. Ghosts begin in the prison located in the center
of the maze. Pacman has three lives, if he gets caught, he
loses one.

There are ten score points for each biscuit. There are
also four larger biscuits called the energizers. When Pac-
man eats such a biscuit, he gets energized for a while. The
fortune is changed, and he can chase the ghosts. When a
ghost is caught, he moves back to ghost prison and player’s
score is increased by 200 points for the first ghost, 400 for
the second. When Pacman eats all the biscuits then player
has completed the level, the maze restarts and the chase
starts again. In the next level, ghosts move slightly faster.
This cycle goes on until the player loses all his lives.

4.2 The Maze

In the original Pacman, there is a static maze (Fig. 3). The
large orange circles are the energizers. In our benchmark,
we generate the maze using a script. The individual bis-
cuits are instantiated as dynamic objects at the beginning
of every level. The number of separate objects increases
the draw calls amount, which is performance heavy for the
rendering engine and tests how efficiently it can batch the
draw calls.

Figure 3: Game screen of the original Pacman maze. (im-
age courtesy of Shaune Williams)

In the middle of the maze, there is a prison for three
ghosts. Pacman starts at the first junction exactly under
the prison. There are no dead ends. On the left and right
side, there are corridors which lead into darkness. Those
corridors act as teleports. When a game character enters
the teleport, it appears on the other side. The dimensions
of the maze are 28×31 tiles; it is symmetrical around the
Y axis. The prison is 8×5 tiles including walls.

The maze itself (Fig. 4) offers a variety of opportunities
to test the rendering engine. In our benchmark the walls

are covered with a displacement map, there are models of
small roofs on the walls. The material on those roofs uses
hardware tessellation to create roof tiles. Moreover, there
is grass on the ground. The grass consists of many tus-
socks with alpha texture to test the engines ability to han-
dle transparent materials. Direct shadows are computed
in real-time. The static maze uses precomputed indirect
lighting, baked into the lightmaps [7].

Figure 4: Benchmark maze with various materials and pre-
computed indirect lighting.

4.3 AI characters

Characters in the game are always standing on one tile.
However, their body is approximately 2×2 tiles large, so
it fits exactly in the corridor.

In the game, there are four ghosts (Fig. 5). Each one of
them has a different personality. The character of the ghost
determines the way he chooses his target. They only make
decisions when they enter a new tile. They never change
direction to go back to the tile they came from. They
choose the next tile per distance to their target (each ghost
has a different target), the lowest distance wins. Ghosts do
not collide with each other.

Blinky Clyde Inky Pinky

Figure 5: There are four ghosts in the game.

The red ghost Blinky goes after the Pacman. The Pac-
man character itself is his target.

Pacman has a point called bait, which is always 5 tiles
in front of him. This bait is the target of the pink ghost
Pinky. If Pacman is heading up, the bait moves another 5
tiles left.

The blue ghost is called Inky. There is another bait,
let’s call it bait2. It acts as the first bait, but it is just 3 tiles
far. There is an imaginary line between ghost Blinky and
Inky’s target, which moves so that the bait2 is always in
the middle of the line.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Ghost Clyde, the orange one, has Pacman as his target.
However, when he approaches Pacman to a distance of 10
tiles, he changes his mind and switches the target to the left
corner. When the distance to Pacman is above 10 again,
the target is switched back.

The ghosts do not calculate the optimal way to their tar-
gets but decide on each tile instead. Therefore, we could
not use the navigation system of the AI game engine com-
ponent. Instead, we have implemented custom scripts to
control ghost’s behavior. However, we do use the AI com-
ponent to physically move the ghost’s rigidbody from one
tile to another.

Ghosts always move according to one of the movement
modes: Chase, Scatter, Frightened. The game is most of
the time in the Chase mode state. In this mode, ghosts are
pursuing their targets. However, the Chase mode is not
active all the time. The game uses a timer, which changes
the Chase and the Scatter mode 3.

In the Scatter mode ghosts forget about their targets,
and each one chooses a target in one corner of the maze.
Switching between the Scatter and the Chase modes cre-
ates a wave effect. So, it seems that ghosts attack Pacman
and after sometime lose interest, then attack again. This
makes the game more interesting to play. The last move-
ment mode Frightened is activated whenever the Pacman
eats an energizer. Ghosts change color, slow down, and
randomly decide which way to go. This behavior creates
the illusion of trying to run away from the Pacman.

4.4 Scaling the problem

We aim to create a benchmark for multiple gaming plat-
forms: Gaming PC, laptop, Android phone and VR. These
platforms differ in controls as well as in graphical perfor-
mance. We have defined three game configurations (see
Table 1), to match the targeted platforms. Q++ are used
for PC and notebook, Q+ for mobile and the light version
Q- for GearVR.

To scale the problem and create various versions we had
to modify some of the game components. For VR deploy,
we use fast mobile shaders with baked light. However, on
the PC version, we have chosen physically based shaders,
together with real-time direct and indirect lighting, HDRI
sky based global illumination, reflection probes and other
advanced techniques provided by the game engines. To
make the calculation, even more performance heavy for
the gaming PC, we have duplicated the maze up to seven
times and created autonomous mazes where ghosts move
independently.

In the final compare test, we plan to configure the game
to look similar on both Unity and Unreal engines. Most of
the parameters can be measured and configured. Theoret-
ically, the games should look identical.

3http://gameinternals.com/post/2072558330/

configuration Q++ Q+ Q-

models full full simplified

maze instances 1 - 7 1 1 lowpoly

shaders PBR PBR mobile

realtime light yes yes no

baked light yes yes yes

reflect. probes yes yes no

SSAO yes no no

motion blur yes no no

antialias FXAA2 no 4x

Table 1: The platform features overview.

5 Unity implementation analysis

Unity Engine is one of the industry standards in game de-
velopment. It is a component based multi-platform solu-
tion, it is easy to learn, and it has large developers base [8].
We have used the Unity 5.3.3 version to implement our
benchmark. In this chapter, we will describe the most sig-
nificant sections of the development.

5.1 Pacman movement

The original Pacman does not move in a physically cor-
rect way. He moves at a constant speed, begins to move
immediately, stops immediately and does not have to slow
down to take a turn. This behavior is part of the gameplay.
It would be simple to implement without physics compo-
nent. To take the physics into account, we have created a
system (Fig. 6) of collision detectors and forces to make
the Pacman move right in the physically correct environ-
ment.

Pacman control script

Player’s input
Outer

sensors
Inner

sensors

Rigidbody

free ways wall collision

apply force

keys

Pacman object

Figure 6: Components of the Pacman control system.

The basic characteristic of the Pacman’s controls is, that
he does not stop in the middle of the corridor. If the key
is pressed, he continues that way, until he runs collides a
wall. According to the key’s map, we determine the direc-
tion of the force, that keeps pushing Pacman to move at a
constant speed.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



To avoid pulsing in speed, when the top speed is
reached, we only add the force needed to achieve the tar-
get speed using a simple regulator based on the formula 1.
Where vmax is maximum speed, v is current speed and t is
the frame time.

F = m× vmax− v
∆t

(1)

To deal with the unrealistic way of the Pacman’s turn-
ing, we have used sensors to detect free ways to turn. The
control script evaluates the input data, and if the way is
free and turn key pressed, it touches the internal physics
vector of the rigidbody’s velocity and modifies it’s direc-
tion (see Fig. 7). This is not physically correct, but it leads
to the desired behavior.

UP ARROW is pressed

X

time = 0 time = 1

Figure 7: Decisions during turn on a cross.

5.2 Maze generator

The Pacman maze has to follow certain rules that we have
described in Chapter 3.5. Our benchmark implementation
allows creating custom mazes in conformity with those
rules. The source for the maze is a text file with a matrix
that describes the tiles. Inside the Unity Editor, a script can
analyze the matrix and generate appropriate maze walls.
This process has to be done before the compilation, be-
cause of the lightmaps, which Unity has to bake before it
runs the game. It also needs to create the navigation mesh
for the AI component.

Energizers and biscuits are instantiated during real-time
at the beginning of every level.

5.3 Ghost AI

Unity has a navigation system implemented as a part of the
engine. We can control AI behavior easily through the API
calls. There is an automatic NavMesh generation, which
constructs the mesh for AI navigation from static objects
in the scene. Unity has NavAgent component, which con-
trols the characters movement.

We could not use the NavMesh for complex pathfind-
ing because the logic of ghost’s decisions does not require
that. To test the AI component of Unity, we let it move the
ghosts from tile to tile as NavAgents with physical rigid-
body.

5.4 Visuals

We have made models in Blender 2.7 and exported them
into Unity through .fbx format. This format has trans-
ferred shape animations as well. We have created different
shape keys in Blender and animated them inside of Unity
as Blend Shapes (Fig. 8).

Figure 8: Ghost’s shape keys inside of Blender.

For materials, we have used the Unity Standard Shader,
a built-in implementation of Physically Based Rendering
(PBR). In real-time graphics, this is quite a recent concept
which empathizes realistic material behavior. In contrast
to Phong Shading Model, the artist does not configure ma-
terials visual parameters, but it is physical properties such
as glossiness or roughness.

To test one of the latest features in OpenGL 4, or Di-
rectX 11 we used the parallax mapping [7]. This tech-
nology dynamically changes the number of vertices in the
object. Based on the high map it generates real bumps, a
new structure on top of the existing object. We have used
Tesselation Shader on the roofs to achieve this effect.

For grass straws, we have used a mobile shader. It is
fast and allows us to render a large number of transparent
objects at once.

The ghosts use transparent Standard Shader. They have
to be rendered on top of the grass. If we let Unity decide
automatically based on the camera distance, the grass sud-
denly pops in front of the ghost while he is going above
it. We have enforced the ghosts to render on the top of the
grass by changing the Custom Render Queue value 4.

The lighting setup is very simple. There is one direc-
tional light as the sun, with soft shadows and slightly yel-
lowish light color. Then the scene is lightened up by the
sky. The sky is spherical high dynamic range image 5;
Unity uses it as an ambient light source. The indirect light
is then baked into lightmaps which contain the intensity
and direction of the indirect light [7].

Concerning screen-space effects [7], we have decided to
use typical representatives common for most AAA games.
We have used anti-aliasing, motion blur, and ambient oc-
clusion. Those effects are available only on the PC version
of the Benchmark.

4http://answers.unity3d.com/questions/609021/
5The spherical sky image is part of Pro-Lighting: Skies package.

https://www.blenderguru.com/product/pro-lighting-skies/

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



PC i7-4770S 3.10 GHz; 16GB RAM;

NVidia GeForce GTX 970; Win 7 64bit

NR: 1920×1200, TR: 1920×1200

Notebook ThinkPad Edge 430; i7-3632QM 2.20 GHz;

16GB RAM; NVidia 635M; Win 7 64bit

NR: 1366×768, TR: 1920×1200

Mobile Samsung Galaxy S6; Exynos 7420 Octa 2.10 GHz;

3GB RAM; Mali-T760MP8; Android 6.0.1

NR: 1440×2560, TR: 1920×1080

VR Samsung GearVR + Samsung Galaxy S6

NR: 1440×2560, TR: 1440×2560

Table 2: Benchmark platforms. NR - native resolution,
TR - tested resolution

5.5 Profiling

To monitor the engine’s performance, we measure the
frame time and save it into logs. For more detailed analysis
of the use of systems resources, the game can be connected
to Unity’s profiler. The profiler allows us to monitor all the
engine’s components and their impact on the performance.
There are graphs of CPU, memory, or graphics card usage
over the time. This information can also be saved and an-
alyzed later 6.

5.6 VR adjustments

To run the benchmark on mobile VR platform GearVR, we
needed to optimize the environment [1]. We have turned
off all the effects, used mobile shaders, baked the whole
lighting setup. The large textures are no problem for the
phone; it has enough memory. There are only 33k trian-
gles. We have baked the lighting setup in Blender Cycles
render engine. There is no doubt this version of the game
looks much worse, but it runs on mobile as VR in real-
time.

6 Results

We have designed four tests to measure frame time. The
tests were executed with the script which simulated user
input to create the same conditions multiple times. The
test platforms are specified in Table 2.

6.1 Performance on different platforms

In the Fig. 9, we can see the PC and the notebook per-
formance. We have measured one, four, and seven maze
instances. If we add one maze (approximately 1.2 million
verts), the frame time becomes about 4 ms longer. This is

6https://www.packtpub.com/mapt/book/game-
development/9781785884580/1/ch01lvl1sec11/saving-and-loading-
profiler-data

50,0

25,0

16,7

12,5

fps

41 2 3 5 6 7 8 90

PC Notebookmaze instances

20

40

60

80

ms

fr
am

e 
tim

e 
in

 m
ili

se
co

nd
s

Figure 9: Average frame time on a PC and a Notebook in
dependence on the number of the maze instances.

20

40

50

60

50

25

20

17

fpsms

fr
am

e 
tim

e 
in

 m
ili

se
co

nd
s

gameplay time in frames

30 33
100 150 200 250

Figure 10: Frame time measured on Samsung S6.

platform independent. PC with one maze reaches times
around 4 ms; with 4 mazes, it is 17 ms; with 7 mazes
around 30 ms. On the laptop, the frame times are much
longer, but the shift between 1, 4, 7 maze instances re-
mains the same, even though the graphics card is about 12
times slower 7.

The mobile version (Fig. 10) is the same with one ex-
ception of screen-space effects which are turned off. We
have decreased the resolution from native 2560× 1440px
to FullHD to match the PC version; frame time ascended
slightly over 50 ms. The VR times are in the Fig. 11. We
have adapted the VR version to run in real-time (Chapter
4.6), although the times are not stable, they approach the
target 60 fps.

The overview of average measured times (Fig. 12) will
become a source for the most basic Unity-Unreal compar-
ison. The PC and the Notebook values are derived from
measurement with one maze instance.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



100

66

50

40

fps

200 300 400 500
10

15

20

25

ms

fr
am

e 
tim

e 
in

 m
ili

se
co

nd
s

100
gameplay time in frames

Figure 11: Frame time measured on GearVR.

0

20

40

60

PC notebook mobile GearVR

 

Fr
am

e 
tim

e 
in

 m
s

5,41
19,25

55,15
51,61

Figure 12: Overview of the Unity frame times.

6.2 Performance scaling on PC

We have tested the frame times just on PC by adding maze
instances one by one (Fig. 13). The camera was stable at
one point; just the instances have appeared on the screen.
An interesting fact is, that it does not matter, how large the
maze appears on the screen, frame time remains the same.
This is shown in the first two measurements; single maze
full screen and little single maze have similar results.

It is also clear here as in Fig. 9 that with each added
maze instance, the frame time grows by a constant of ap-
proximately 4 ms.

6.3 Unity graphics quality settings

Unity offers different quality settings 8. We have tested
them on PC with 7 mazes (Fig. 14). Those presets can be
selected before the game is launched. The settings affect
mainly light quality; shadow draw distance, anti-aliasing
or LOD distance settings. Their impact on the frame time
is not substantial. However, the visuals are much worse on
Fastest compared to Fantastic. Therefore it is better to op-
timize the assets or turn off screen space effects manually
inside the Unity Editor than decrease the quality settings
in the case when we need higher performance. Detailed
information on the exact values of the default quality set-
tings can be found in the Unity manual.

6.4 Engine’s components load

We present a brief analysis of the engine’s component
load. We have measured all the platform versions run-

7htt p : //www.videocardbenchmark.net/highendg pus.html
8https://docs.unity3d.com/Manual/class-QualitySettings.html

 10

 20

 30

 40

1-FULL 1 2 3 4 5 6 7

Fr
am

e 
tim

e 
in

 m
s

maze instances
0

5

10

15

20

25

30

35

40

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

PERFORMANCE SCALING - PC
1 - full 1 2 3 4 5 6 7

1 - full 1 4 7
1-FULL 1 4 7

Figure 13: Frame times are growing with the number
of maze instances on PC.

15

20

25

30
ms

4 0 03 0 0 5 0 0 6 0 0
gameplay time in frames

fr
am

e 
re

nd
er

 ti
m

e

Fastest Fast Simple
Good Beautiful Fantastic

67

50

40

33
fps

Figure 14: Unity runtime quality settings.

ning inside of Unity Editor with the Profiler. On PC
(Fig. 16) the rendering component (the blue parts) takes
over 90% of the frame time. Drawing performs most
render passes and applies shaders, UpdateDepthNormal-
sTexture and UpdateDepthTexture are calls creating the
G-buffer textures9. The G-buffer contains depths and nor-
mals for screen pixels and is used with the screen-space ef-
fects. The UpdateDepthNormalsTexture is invoked by the
Screen space ambient occlusion. These effects are turned
off on the mobile and VR platforms. The final component
load is shown in Fig. 15. The mobile and VR versions run
much faster then the ones for PC. VR version has the tar-
get 90 fps on PC with Oculus Rift 2. Therefore the Other
component contains around 9 ms of waiting for sync.

7 Conclusions

We have carried out the first part of game engine compar-
ison. We have designed and implemented a benchmark
application that measures the Unity game engine’s perfor-
mance on PC, notebook, mobile and GearVR. This bench-
mark was built as a game of adequate complexity - 3D

9https://docs.unity3d.com/Manual/SL-CameraDepthTexture.html

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



4.18

.13 .03 .17 .09 .06
.35

PC 1
5.74

34.36

.17
.73

.11 .26

1.09

0

1

2

3

4

5

6
PC 7

1.79

.2 .03 .13 .07 .04
.32

mobile

1.74

9.50

.25 .03 .16 .16 .05

VR

Rendering       Scripts       Animation       Physics       GUI      AI       other

[ms]

Figure 15: Components load for different platforms.

Drawing
44.3%

Update depth
normals texture

23.5%

Update
depth texture

17.2%

Culling 2.0%
Motion Blur 1.0%

Antialiasing 0.2%
GUI 1.7%

Scripts 3.0% AI 0.9%
Animation 0.8%

Physics 0.1%
Overhead 1.7%

Other 3.6%

Figure 16: Components load ratio on PC, 1 maze instance.

reimplementation of the Pacman.
The application runs with frame time around 4 ms on

PC, 55 ms on the notebook. Adding another maze in-
stances does not multiply the frame times, but just adds
the constant of 4 ms/maze, both on the PC and notebook.
It is an unexpected result concerning the significant differ-
ence between the graphical cards. On mobile, it runs with
frame time slightly above 50 ms. The VR versions frame
time moves around 20 ms, which is not optimal but accept-
able on the GearVR. The screen space effects do make a
significant difference in the length of the frame time, while
the overall coverage of the screen does not.

We will continue by reimplementing the same bench-
mark application in Unreal engine and comparing the data
to the results from Unity.

References

[1] Official Unity documentation: Optimisation for VR.

[2] E. F. Anderson and col. Choosing the infrastruc-
ture for entertainment and serious computer games -
a whiteroom benchmark for game engine selection. In
2013 5th Intl. Conf. on Games and Virtual Worlds for
Serious Apps, pages 1–8.

[3] D. H. Eberly. 3D Game Engine Architecture: En-
gineering Real-Time Applications with Wild Magic.
Morgan Kaufmann, 2004.

[4] T. Long. Oct. 10, 1979: Pac-man brings gaming into
pleistocene era. Wired, 2007.

[5] P. Petridis, I. Dunwell, S. de Freitas, and D. Panzoli.
An engine selection methodology for high fidelity se-
rious games. In 2010 2nd Intl. Conf. on Games and
Virtual Worlds for Serious Appss, pages 27–34, March
2010.

[6] J. Schell. The Art of Game Design: A book of lenses.
CRC Press, 2008.

[7] N. Hoffman T. Akenine-Moller, E. Haines. Real-Time
Rendering. A K Peters, 2008.

[8] A. Watkins. Creating Games with Unity and Maya.
Focal Press, 2011.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


