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Abstract

Light transport simulation algorithms are remarkably adept
at recreating a variety of light phenomena which occur in
nature. As such, they have seen widespread adoption across
the industry, which made it paramount to create efficient
and robust algorithms. Probabilistic connections for bidi-
rectional path tracing (PCBPT) represents one such recent
algorithm. Unfortunately, no implementation of PCBPT
was publicly available, which is why we implemented it
into the open-source renderer Mitsuba 1. We evaluate the
algorithm against standard bidirectional path tracing on a
variety of different scenes. Our comparisons provide in-
sight into the type of scenes for which PCBPT can provide
an improvement and we examine cases where the additional
computational cost presents too much overhead.

Keywords: bidirectional path tracing, importance sam-
pling, Mitsuba renderer

1 Introduction

Practical photo-realistic image synthesis is one of the long-
standing goals of computer graphics research. Its applica-
tions range from the entertainment industry to architectural
and engineering visualizations. Light transport simulation
algorithms simulate how light behaves within a simplified
mathematical model to this end. A popular subclass of
such algorithms, jointly referred to as Monte Carlo render-
ing, uses sampling-based statistical methods to estimate
the light distribution in a scene, and with it the final image.
The most common procedure for creating samples involves
shooting rays into the scene, starting either from the camera
sensor or from the light emitter.

In practice, getting a good-looking image often implies
taking many samples. As taking samples from the distri-
bution is computationally expensive, certain images often
require extensive resources and hundreds of hours of pro-
cessing time. This makes designing smarter algorithms
which, in various ways, reduce the running time while

∗dodiknikola at gmail dot com
1The code is available at https://www.cg.tuwien.ac.at/

research/publications/2017/dodik-2017-pcbpt/

remaining robust and converging to the correct result an
important and open problem.

Bidirectional path tracing (BDPT) [7, 10] approaches
this problem by combining the strengths of path tracing
and light tracing using multiple importance sampling (MIS).
BDPT reuses a pair of emitter and sensor paths to produce
more than one sample by connecting the two paths at dif-
ferent locations building multiple full paths.

Even though each vertex in the two subpaths can be
importance sampled using standard methods, the connec-
tions between the two subpaths are made in a deterministic
fashion. Therefore, BDPT cannot “sample” the connection
towards a direction where the contribution would be large.
BDPT also connects each emitter subpath to each sensor
subpath, even if the connections might not produce a large
contribution. Furthermore, BDPT discards the two paths
after their contribution has been accounted for.

Probabilistic connections for bidirectional path tracing
(PCBPT) by Popov et al. [9] aims to mitigate these short-
comings. It is able to choose the subpaths to which we
connect from a set of possible options, therefore making
it possible to concentrate the work where it really matters
while reusing subpaths and potentially generating more
samples than standard BDPT.

At the time of writing, the original PCBPT implemen-
tation by Popov et al. [9] remains closed source and is
not available to the public. Implementing the method in a
well-established open-source renderer would enable com-
parisons with other existing methods. It would also enable
potential future work to build upon the implementation.

In this paper, we implement PCBPT into the Mitsuba
renderer [6], as detailed in Section 4. The Mitsuba renderer
implements many state-of-the-art methods, facilitating eas-
ier comparisons with them. Furthermore, Mitsuba has a
plugin architecture, as well as a framework for bidirectional
methods, which both make it a prime tool for researchers.

In Section 5, we provide comparisons with other methods
to show how this approach handles a number of complex
scenes and scenarios. In our tests, we noticed significant
speed-ups when using PCBPT on difficult scenes compared
to standard BDPT. We also noticed a decrease in the root-
mean-square error (RMSE) of up to 11%.
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2 Review of Bidirectional Path
Tracing

The basic idea behind the bidirectional path tracing algo-
rithm is to start tracing rays not just from the sensor (path
tracing), but from the emitter as well (light tracing). Once
the tracing procedure is finished, we have generated a set
of emitter subpaths of increasing length, as well as a set of
sensor subpaths of increasing length. We can connect each
sensor subpath to each emitter subpath to create full paths.

Assuming we have traced a sensor path z̄ with vertices
(z1,z2, . . .), and an emitter path ȳ with vertices (y1,y2, . . .),
to generate path of length l, we simply prepend the vertices
of the emitter subpath of length s to the vertices of the sen-
sor subpath of length t, x̄ = (z1, . . . ,zt ,ys, . . . ,y1). BDPT
uses this idea to generate many full path contributions by
combining each emitter to each sensor subpath.

The contribution of such a path is calculated in the same
fashion as the contribution of a path in path tracing. To
be able to do this, we need to pay attention while creating
the emitter subpaths to keep track of the BSDF values as if
they were evaluated from the reverse direction. The final
contribution of a full path then evaluates to

f (x̄) =Le(y1→ y2)Πs(ȳ) f conn(ȳ, z̄) (1)
Πt(z̄)W (z2→ z1),

f conn(ȳ, z̄) =ρ(ys−1→ ys→ zt)G(ys↔ zt) (2)
ρ(ys→ zt → zt−1),

where Le(y1 → y2) represents the radiance emitted from
point y1 to point y2. W (z2→ z1) determines the sensor’s
sensitivity for a given light ray, G(ys↔ zt) is the general-
ized geometric term, ρ is the BSDF of the material, and
Πs(ȳ) and Πt(z̄) are the emitter and sensor path through-
puts, respectively.

Calculating the probability of a path is straightforward.
We use p→(x̄) to symbolize the probability of a path being
sampled in the direction away from the emitter, and p←(x̄)
for the direction away from the sensor. The probabilities
of sampling the subpaths, p→(ȳ) and p←(z̄), are calculated
as a product of the probabilities of sampling each vertex in
the path, in the same way as in regular path tracing. The
connection between the subpaths is made deterministically,
which means that the probability of connecting ys with zt
equals one. This makes the probability of sampling the full
path simply equal to p(ȳ)p(z̄).

The big improvement to BDPT was brought about by
Veach and Guibas [11] after they introduced MIS to the
algorithm. MIS is based on the simple idea that, under cer-
tain conditions, we can separate the Monte Carlo estimator
into a weighted sum of multiple estimators. Each of these
estimators uses a different sampling strategy (i.e. a differ-
ent PDF) for sampling the integrand. After we generate
a sample from a strategy, we can assign it a weight based
on the PDFs of the other strategies. This technique allows
us to retroactively downweigh the negative effects of an
inappropriate sampling strategy.

The MIS strategies in the sense of BDPT are given by
the location of the deterministic step. Therefore, a path of
length l = s+ t could have been generated in l+1 different
ways, (s = 0, t = l),(s = 1, t = l−1), . . . ,(s = l, t = 0). In
this setting, t = 0 represents the case where the emitter
path intersects the camera directly, and s = 0 corresponds
to standard path tracing. Note that we can evaluate the
probability of path having been generated by any of these
strategies by calculating what the probability of sampling
the vertices would have been, had they been sampled from
the other direction.

Denoting the BDPT sampling strategy by the length of
the sensor subpath before the deterministic connection, t,
we define the MIS contribution of the jth sampled path x̄ j
as

Ĩt(x̄ j) = wt(x̄ j)
f (x̄ j)

pt(x̄ j)
, (3)

where wt(x̄ j) represents the MIS weight of strategy t for x̄ j,
and pt(x̄ j) the probability of x̄ j having been sampled. The
full MIS estimator for paths of length l is then given by

Ĩl =
l

∑
t=0

1
Nt

Nt

∑
j=1

Ĩt(x̄ j), (4)

where Nt is the total number of samples made from strategy
t. The standard balance heuristic for paths, as presented by
Veach and Guibas [11], is given as

wt(x̄ j) =
pt(x̄ j)

∑
l
i=1 pi(x̄ j)

. (5)

3 Probabilistic Connections for
Bidirectional Path Tracing

PCBPT extends BDPT to allow for additional reuse of both
sensor and eye paths, and introduces importance sampling
of the sensor and eye path connections. Additionally, it
modifies multiple importance sampling (MIS) to better suit
the problem at hand.

In each iteration, for each pixel, PCBPT generates an
emitter and a sensor path of infinite length 2. The first M
emitter paths are stored in a cache. Then, for each sensor
subpath PCBPT importance samples K emitter subpaths
from the cache to which it can connect. We present one
iteration of the high-level PCBPT algorithm in Algorithm 1,
and discuss the theoretical details behind this in Section 3.1.

In order to sample the emitter subpaths, PCBPT uses an
importance sampling scheme similar to the one presented
by Georgiev et al. [4], which we discuss in more detail in
Section 3.1.3.

While path reuse can save on computational resources,
the downside is that it potentially introduces correlation
between two sampled paths, which in turn invalidates the

2Naturally, in practice the paths either get truncated or attenuated to
zero by Russian roulette.
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Figure 1: Different approaches to sampling from the t = 2 strategy for paths of length l = 4. Left: In each iteration, BDPT
generates only one sample for this strategy, i.e., Nt = 1 in Equation 4. Note that the sample is made deterministically.
Middle: An alternative approach would be to cache M emitter subpaths, and connect to all of them, i.e., Nt = M. This
method corresponds to combinatorial bidirectional path tracing [8]. Right: Instead of evaluating all M cached connections,
PCBPT importance samples K�M of them. This way, we only connect to the high-contribution subpaths, and fewer
connections need to be evaluated.

variance-reduction guarantees given by the balance heuris-
tic. To mitigate this, Popov et al. [9] also present a novel
derivation of the balance heuristic for correlated samples.
We provide the definition of the modified balance heuristic
in Section 3.2.

It should be noted that PCBPT evaluates the standard
BDPT contribution for any pair of subpaths where the num-
ber of vertices in either subpaths is less than some thresh-
old. It would not be possible to use PCBPT for paths where
t = 0 or s = 0 since these paths represent the case where
the sensor and the emitter are intersected during the tracing
procedure. For paths where t = 1 or s = 1, we follow stan-
dard BDPT practice and use direct sampling of the sensor
or emitters, respectively. The subpath-length threshold be-
tween BDPT and PCBPT, here set to 2, could be changed
to an arbitrary number larger than 2. However, in practice
we want to utilize the benefits PCBPT offers, and therefore
set the threshold as low as possible.

Algorithm 1: One iteration of the PCBPT algorithm.

1 Generate the emitter paths.
2 Generate the sensor paths.
3 Evaluate the path tracing and light tracing

contributions.
4 for i← 1 to number of importance cache paths. do
5 Generate sensor path z̄c.
6 for zc

t ∈ z̄c, where t = 2 to lc
z̄ do

7 Generate the PMF for zc
t .

8 Create an importance-cache record from zc
t .

9 end
10 end
11 for i← 1 to number of pixels in the image do
12 Generate a sensor path, z̄.
13 Find the closest importance-cache records.
14 Interpolate the PMF.
15 Sample the interpolated PMF.
16 Add the contribution to the ith pixel estimate.
17 end

3.1 Importance Sampling Emitter Paths

3.1.1 Connecting to Multiple Emitter Subpaths

The PCBPT algorithm is constituted by a number of build-
ing blocks, the most basic of which only involves connect-
ing a sensor subpath to multiple emitter subpaths, similar
to combinatorial bidirectional path tracing [8]. The part of
the algorithm dealing with probabilistically connecting to a
subset of these subpaths can be thought of as an additional
optimization. As in the original paper, in following sec-
tions, we ignore the connections between subpaths which
are handled by standard BDPT methods, and limit our dis-
cussion to the evaluation of the integral over paths of length
l, Il , without loss of generality.

As previously mentioned, PCBPT caches M emitter
paths of infinite length, or in other words, M emitter sub-
paths for each possible length of the emitter subpath. It
then connects each sensor subpath of length t to each of the
M emitter subpaths of length s, such that s+ t = l. Follow-
ing the definitions from Equations 3 and 4, our MIS MC
estimator can be written as

Ĩl =
l

∑
t=0

1
M

M

∑
j=1

Ĩt(x̄ j). (6)

In PCBPT, the path x̄ j is generated by connecting the
sensor subpath of length t with the jth emitter subpath of
length s. To generate M samples, this procedure is repeated
for all cached emitter subpaths of length s.

3.1.2 Probabilistic Connections

In order to importance sample emitter subpaths, Popov et al.
[9] suggest using another MC estimator over the inner sum.
In other words, they suggest evaluating a Monte Carlo
estimate of St = ∑

M
j=1 Ĩt(x̄ j) by importance sampling an

interpolated probability mass function (PMF) to generate
K samples of Ĩt(x̄ j) . In our case, the sample space is the
emitter cache and the PMF is given by the interpolated
cache records. The MC estimator of the inner sum is then
given by
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S̃t =
1
K ∑

x̄k∈K

Ĩt(x̄k)

pmf(x̄k)
, (7)

where K represents the set of sampled paths. The full
PCBPT estimate of the contribution of paths of length l is
therefore given by

Ĩl =
l

∑
t=0

1
M

1
K ∑

x̄k∈K

Ĩt(x̄k)

pmf(x̄k)
. (8)

3.1.3 Probability Mass Function Caching

The perfect PMF for a sensor vertex, s.t. Var[S̃t ] = 0, is
achieved when the probability of sampling an emitter sub-
path is proportional to the contribution of the path which
would be generated by connecting to that subpath.

Assuming the sensor subpath z̄ and assuming cache con-
tains M emitter subpaths, ȳ(1), ȳ(2), . . . ȳ(M), the probability
of connecting to the jth emitter subpath is given by nor-
malizing the contribution of the full path x̄( j) by dividing it
with St so that the PMF would sum up to one. As the sen-
sor subpath is reused for all connections, its contributions
cancel out, making the PMF depend only on the emitter
subpaths and the last vertex of the sensor subpath,

pconn( j) =

f (x̄( j))

p(x̄( j))

∑
M
k=0

f (x̄(k))
p(x̄(k))

=

f conn(ȳ( j),z̄) f (ȳ( j))

p(ȳ( j))

∑
M
k=0

f conn(ȳ(k),z̄) f (ȳ(k))
p(ȳ(k))

. (9)

Due to this, we can instead only calculate the PMFs at
a small set of importance-cache records in the scene and
then interpolate them for other vertices. The interpolation
scheme is described in the supplemental material for the
original paper by Popov et al. [9].

We can intuitively see why this PMF calculation per-
forms well. It only samples visible vertices due to the vis-
ibility calculation in f conn, it prefers subpaths with larger
throughputs and importantly, importance samples based on
the throughput of the connections also contained in f conn.

3.2 Multiple Importance Sampling for Corre-
lated Paths

Reusing paths leads to sample correlation, which in turn
leads to an overall increase in variance. Popov et al. [9]
provide a modified balance heuristic which minimizes an
upper bound on the variance, given the presence of cor-
related samples. They offer the exact derivation in the
supplemental material for their paper. The final modified
MIS weights are given by

wt(x̄) =
Nt pt(x̄)

∑i∈Su Ni pi(x̄)+∑i∈Sc pi(x̄)
, t ∈ Su (10)

wt(x̄) =
pt(x̄)

∑i∈Su Ni pi(x̄)+∑i∈Sc pi(x̄)
, t ∈ Sc, (11)

where Su represents the set of uncorrelated and Sc the set of
correlated samples, Ni represents the number of samples in
strategy i. The uncorrelated samples are the ones handled
by standard BDPT, i.e., samples where either t < 2 or s < 2.
All of the samples which are generated using PCBPT are
treated as correlated.

Intuitively, since one “bad” emitter subpath which pro-
duces high-variance samples when connected to can influ-
ence many pixels, the modified balance heuristic tries to
decrease the weights assigned to these samples.

4 Implementation

In this section we will discuss in more detail how we im-
plemented the probabilistic connections for bidirectional
path tracing (PCBPT) algorithm into the Mitsuba renderer.
Our practical implementation of PCBPT differs somewhat
from the theoretical explanation presented in the previous
chapter. We discuss these differences and provide justifica-
tions for them in Section 4.1. In Section 4.2 we describe
our implementation in detail, along with comprehensive
pseudo-code in Algorithms 2 and 3. In Section 4.3, we give
a short summary of the path we found useful when taking
PCBPT from theory to implementation.

4.1 Modifications

The first modification we made concerns the memory con-
sumption of the algorithm presented in Section 1. Directly
implementing this pseudo-code would require us to store
W ×H emitter and sensor subpaths. We opted for a more
optimized implementation, which at any point only requires
saving the M = 100 emitter paths and the importance-cache
records with their respective PMFs.

The second necessary modification is due to the fact
that Mitsuba features sensors that can be intersected by
rays. In the original paper by Popov et al. [9], the renderer
only supported pinhole cameras, and connections where
t = 0 were impossible. Therefore, our algorithm differs
from the original implementation in that it supports these
connections and treats them with standard BDPT methods.

The third modification is due to the way Mitsuba han-
dles light-tracing contributions. In the standard BDPT
algorithm, the number of light rays coming to a pixel po-
tentially equals the total number of rays emitted into the
scene. Due to this, the number of samples for strategies
t = 0 and t = 1 in one iteration would typically be treated
as N0 = N1 =W ×H. However, we were unable to verify
that this is the case in Mitsuba, as Mitsuba saves these con-
tributions in a separate buffer, named the light image. Fur-
thermore, when calculating the balance heuristic weights,
Mitsuba assumes that the number of connections for these
samples equals one, i.e., N0 = N1 = 1. Due to these differ-
ences, the variance of the estimator might differ from the
standard MIS estimator. We were unable to verify whether
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the variance-reduction guarantees of the modified balance
heuristic still hold in this case.

4.2 Algorithm

In our implementation, we start off by generating and sav-
ing the M emitter paths. Note that it is not necessary to
store the emitter subpaths which would have a zero proba-
bility of being sampled from any possible importance cache
point. This includes emitter subpaths with zero throughput,
and those shorter than two. Subpaths with zero throughput
include vertices where the throughput has been attenuated
to zero by Russian Roulette, as well as subpaths to which
we can never connect to by random chance such that we
produce a non-zero contribution. One example would be
a subpath where the last subpath vertex is located on a
material with a Dirac delta BSDF (i.e., a perfectly specu-
lar material). We also do not need to reserve space in the
cached PMFs for subpaths shorter than two, as those are not
handled by PCBPT and the probability of sampling them
needs to equal zero. This seemingly small optimization
decreases the memory consumption to about one third in
our tests. We also noticed a slight decrease in execution
times, which we attribute to improved cache locality.

To build the importance cache, we generate 0.004×W ×
H sensor paths, following the original paper’s suggestion.
At each vertex of each path z̄c of length lc

z̄ , we create an
importance-cache record zc. For each zc, we iterate over
all of the cached emitter subpaths and store the luminance
of its contribution in the PMF. We chose the luminance as
creating a multi-dimensional PMF based on the spectral
contribution would make little sense in practice.

We store these cache records in a kD tree [1], which is
already implemented in Mitsuba. This allows us to per-
form fast k-nearest-neighbor queries when searching for
the nearest importance-cache points to use for interpolation.
We then normalize the PMF and do a prefix sum over the
values to create a cumulative distribution function (CDF).

The original paper suggests using low discrepancy sam-
pling to generate importance-cache paths uniformly over
the screen. During our implementation in Mitsuba, we
realized that there is no way to explicitly seed the low dis-
crepancy sampler plugin. Due to this, we use the uniform
random integer sampling capabilities offered by the Boost
library [3]. As Boost is already distributed with Mitsuba,
we introduce no new dependencies to the build.

After the CDFs have been generated, we start with the
evaluation of the path contributions. In order to save some
computational resources, we reuse the M emitter paths
for the first M BDPT connections as well. After that, we
generate a new emitter path for each pixel to use for the
BDPT contribution. This entire procedure is detailed in
Algorithm 2.

The function EvalBDPT from Algorithm 2 represents
the standard BDPT subpath connection algorithm, except
that in this case, it only connects subpaths where s < 2

Algorithm 2: One iteration of the PCBPT algorithm.

1 for i← 1 to M do
2 Generate and cache an emitter path.
3 end
4 for i← 1 to number of importance cache paths. do
5 Generate sensor path z̄c.
6 for zc

t ∈ z̄c, where t = 2 to lc
z̄ do

7 Generate the PMF for zc
t .

8 Add zc
t to a kD tree as an importance-cache

record.
9 end

10 end
11 for i← 1 to number of pixels in the image do
12 Generate a sensor path, z̄.
13 if i < M then
14 ȳBDPT← ith emitter path from the emitter

cache.
15 end
16 else
17 ȳBDPT← generate a new emitter path.
18 end
19 contribution←

EvalBDPT (z̄, ȳBDPT)+EvalPCBPT (z̄);
20 Add contribution to the ith pixel estimate.
21 end

or t < 2. The function EvalPCBPT evaluates the PCBPT
contribution and is shown in more detail in Algorithm 3

To evaluate the PCBPT contribution, we start by iterat-
ing over the vertices of the sensor path. For each sensor
vertex, in order to accumulate the contribution of K sub-
paths, we repeat the following procedure K times. First,
we query its 6 nearest importance-cache points by using
Mitsuba’s k-nearest-neighbors functionality. At no point
we explicitly interpolate the entire CDFs. Rather, we use a
lazy evaluation scheme.

To sample from a CDF, we first generate a uniform ran-
dom sample between 0 and 1. As in standard inversion
sampling practice, we find the lower bound for the uniform
sample within our CDF, i.e.,the largest CDF value which is
smaller than our sample. We can rely on using the binary-
search algorithm to find the lower bound since the CDF
is monotonically increasing per definition. We proceed in
standard binary-search fashion with an index pointing to
the middle of the CDF arrays. We interpolate the 6 CDF
values only at that index, and based on that information,
move either to the right or to the left of that index. After
the emitter subpath has been sampled, we accumulate its
contribution to the estimate.

As explained in Section 4.1, we follow Mitsuba’s prac-
tice and assume that the number of uncorrelated samples
per iteration equals one. Setting these numbers in Equa-
tion 10, we see that the separation between the correlated
and uncorrelated samples becomes irrelevant, and that the
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Algorithm 3: EvalPCBPT
Input: Sensor path z̄
Output: PCBPT Contribution to the pixel estimate

1 contribution← 0
2 for zt ∈ z̄, where t = 2 to lz̄ do
3 z̄t ← subpath ending in vertex zt .
4 Query 6 importance-cache points which are

spatially closest to zt .
5 for k← 1 to K do
6 Use binary search to lazily inversion sample

the interpolated PMF and choose an emitter
subpath ȳ( j)

s .
7 s← length of the subpath ȳ( j)

s .

8 pconn( j)← probability of having sampled ȳ( j)
s

from the PMF.
9 x̄← (z̄t , ȳ

( j)
s ).

10 contribution←
contribution+ws(x̄)

f (x̄)
pconn( j)p(x̄) .

11 end
12 end
13 contribution← 1

KM contribution
14 return contribution

final MIS weight becomes simply

wt(x̄) =
pt(x̄)

∑i∈Su∪Sc pi(x̄)
, (12)

for all t.
Given that Mitsuba assumes that the number of sam-

ples equals one for all strategies, our implementation sim-
ply reuses Mitsuba’s MIS functionality. Note that the fi-
nal weights assigned to the correlated samples still get
weighted down to account for sample correlation, as the
number of samples Nt where t ∈ Sc equals M.

4.3 From Theory to Practice

During implementation, we found it useful to separate the
algorithm into smaller testable pieces. Accordingly, we
have developed a potentially useful path for taking PCBPT
from theory to practice. Here, we present the steps which
we took in order to arrive at the end result.

1. First, we created a new integrator, paying attention to
the fact that PCBPT cannot be parallelized on tile-by-
tile basis. Instead each thread performs one iteration
of the algorithm and renders an entire image, with a
fraction of the total samples per pixel.

2. We then created a function which connects two paths
and evaluates their contribution. This function can
be reused to calculate the final sample value for both
BDPT and PCBPT contributions.

3. Next, we implemented the generation of M emitter
paths and allocated the memory for the PMFs accord-
ingly. We save the PMFs in contiguous memory and
only save iterators to the beginning of the PMF at each
importance-cache point.

4. We implemented an intermediary step where the t ≥
2 subpaths were connected to each vertex of all M
emitter paths and calculated the contribution as given
in Equation 6. Note that the algorithm at this point
equates to combinatorial bidirectional path tracing
[8], without the offloading of connections to the GPU.

5. We continued by including probabilistic connections.
At first, we used a uniform PMF to sample K connec-
tions and evaluate Equation 8, replacing Equation 6.

6. Next, we replaced the uniform PMF with the PMF
of the first nearest neighbor of the sensor path vertex.
The results of PCBPT should start being visible.

7. Finally, we implemented the lazy-evaluation binary
search on the 6 nearest neighbors to sample from the
CDF.

We also found it important to be able to display PCBPT
connections separately from the BDPT connection during
development and testing. It was also useful to have scenes
with highly occluded emitters since this is where PCBPT
has the largest effect.

5 Results

It is clear that PCBPT induces the same path-generation
cost as BDPT since both algorithms generate W × H
paths. PCBPT, however, has additional cost for gener-
ating the caches, as well as calculating and interpolating
the PMFs. This usually means that BDPT will manage
to produce many additional paths in the same time com-
pared to PCBPT. However, the benefits of PCBPT become
visible when most of the contribution is caused by inner
paths, i.e., paths where either s ≥ 2 and t ≥ 2. In such
cases, the computational cost is made up for by the faster
convergence of inner paths caused by importance sampling
the connections.

Based on this knowledge, we designed our tests to cover
a number of different scenarios. We create equal-time
comparisons with BDPT on three difficult scenes – the
Veach Ajar Door scene, The Breakfast Room scene, and
our own modification of the The White Room scene. For
each of the scenes, we render the images once using all
paths for both BDPT and PCBPT, and once using only
the inner paths. We also present the reference images, as
well as the normalized root-mean-square error (RMSE) of
the equal-time comparisons. All of the used scenes were
obtained from Bitterli’s Rendering Resources page [2]. The
rendering was done on a commodity Lenovo Y50-70 laptop
with an Intel i7-4710HQ processor operating at 2.50GHz
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(a) BDPT, all paths, 120spp, ∼ 17 minutes, RMSE 0.073 (b) PCBPT, all paths, 32spp, ∼ 17 minutes, RMSE 0.061.

(c) BDPT, inner paths, 120spp, ∼ 15 minutes, RMSE 0.088. (d) PCBPT, inner paths, 32spp, ∼ 15 minutes, RMSE 0.0040.

Figure 2: Veach Ajar Door scene equal-time comparison.

and 16GB of RAM. All of the scenes were rendered with
M = 100 cached paths, and K = 10 connections.

In order to verify our algorithm, we rendered the Cornell
Box scene using both BDPT and PCBPT and compared the
RMSE values for both images. We have noticed a major
performance penalty for such scenes when using PCBPT,
since this is a very simple scene with little geometry and
a large visible emitter. As such, most BDPT connections
do actually make non-zero contributions, and the cache-
generation overhead of PCBPT offers no benefits in return.

5.1 Comparisons

We created equal-time comparisons between BDPT and
PCBPT on a number of difficult scenes. For these scenes,
we rendered the ground-truth images using a large num-
ber of samples per pixel, against which we calculated the
normalized RMSE. We present the ground-truth images as
well as the results in Section 5.2.

The Veach Ajar Door represents a scene with an occluded
emitter. More precisely, the emitter is located directly
behind a slightly ajar door, emitting light into the room
through the opening. This scene is potentially difficult for
classical path tracing, as the sensor paths are unlikely to
find the emitter. Figure 2 shows the comparison between
the two images rendered using all paths, i.e., both the inner
as well as the outer connections, and the comparison of
only the inner paths.

BDPT and PCBPT have a comparable error in the im-

ages where all paths are taken into account, with PCBPT
being slightly better than BDPT. This is justified by the
fact that even though the emitter is occluded, due to its
position, most of the rays coming from it still reach the sen-
sor. This means that light tracing actually has a significant
contribution to the final estimate. In Figure 2, we can see
that the inner paths do converge a lot faster with PCBPT
than with BDPT. For the inner paths, RMSE improved by
around 4%, while only an 1% improvement was achieved
for the image rendered using all paths. This leads to the
conclusion that most of the noise in the image rendered
using PCBPT comes from the outer paths and that BDPT is
able to create more outer subpath contributions in the same
time to overcome the lack of quality for the inner paths.

We modified The White Room scene by resizing the
blinds covering the windows such that most of the illumi-
nation coming into the room is due to a small opening in
the middle window in order to produce a more difficult
lighting condition. We notice significant improvements for
this scene when using PCBPT (Figure 3). The RMSE error
for the images where all of the paths were accounted for
improved by 11%, and by 13% for images where only inner
paths were used. This is to be expected as only a small
subset of rays actually makes it into the scene. Therefore,
it makes sense to importance sample the rays to which we
can connect. Note that the image rendered using standard
BDPT samples high-contribution paths with low probabil-
ity, resulting in firefly artifacts, which require many samples
to disappear (compare with Figure 6).
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(a) BDPT, all paths, 120spp, ∼ 16 minutes, RMSE 0.130. (b) PCBPT, all paths, 32spp, ∼ 16 minutes, RMSE 0.022.

(c) BDPT, inner paths, 120spp, ∼ 11 minutes, RMSE 0.147. (d) PCBPT, inner paths, 32spp, ∼ 11 minutes, RMSE 0.013.

Figure 3: The White Room scene equal-time comparison.

The Dining Room scene represents a failure case (Fig-
ure 4). It contains a large emitter on the side of the room,
behind a partially occluded window. However, given that
the emitter is only somewhat occluded, most of the paths
from the camera can actually directly sample the emitter
and vice versa. Furthermore, most of the vertices are con-
nectable as they are all located inside of the room. This
makes this scene highly suitable for BDPT, which is also
visible from the results. PCBPT does show a much lower
RMSE on the inner path comparisons, but this is overshad-
owed by the many outer path contributions BDPT is able
to evaluate. Furthermore, in the PCBPT image, more noise
is visible on the chair, where the BSDF is mostly specular.
As it is impossible to connect to a vertex on a specular
surface, PCBPT can offer no improvement in this situation,
and most of the contributions need to come from standard
path tracing. Note that we had to artificially adjust the
brightness and contrast of the inner path images, in order
for them to be visible in the printed version of the paper 3.

5.2 Ground-Truth Images and The Root
Mean Square Errors

In order to provide RMSE values, we generated a number
of ground-truth images, shown in this section. The images
are shown in Figures 5, 6, and 7. For an easier overview,

3The unaltered version of the images is available in the thesis ver-
sion of this work, available at https://www.cg.tuwien.ac.at/
research/publications/2017/dodik-2017-pcbpt/

we show all RMSE values in Table 1, as well as the ratio
between the RMSE for the BDPT image, EB, and the RMSE
for the PCBPT image, EP.

All Paths BDPT PCBPT EB
EP

Veach Ajar Door 0.073 0.061 1.20
The White Room 0.130 0.022 5.90
The Dining Room 0.022 0.035 0.63

Average 0.075 0.040 2.60

Inner Paths BDPT PCBPT EB
EP

Veach Ajar Door 0.088 0.040 2.20
The White Room 0.147 0.013 11.31
The Dining Room 0.021 0.011 1.91

Average 0.085 0.021 5.14

Table 1: Normalized Root Mean Square Error for the im-
ages from Section 5.1. A lower value means a better result.

6 Conclusion

We implemented probabilistic connections for bidirectional
path tracing and showed that it significantly improves the
convergence of inner paths as well as the overall conver-
gence of scenes with very difficult lighting conditions.
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(a) BDPT, all paths, 150spp, ∼ 9 minutes, RMSE 0.022. (b) PCBPT, all paths, 48spp, ∼ 9 minutes, RMSE 0.035.

(c) BDPT, inner paths, 150spp, ∼ 5 minutes, RMSE 0.021. (d) PCBPT, inner paths, 48spp, ∼ 5 minutes, RMSE 0.011.

Figure 4: The Dining Room scene equal-time comparison.

(a) All Paths. (b) Inner paths.

Figure 5: Veach Ajar Door ground-truth images.

(a) All paths. (b) Inner paths.

Figure 6: The White Room ground-truth images.

(a) All Paths. (b) Inner paths.

Figure 7: The Dining Room ground-truth images.

However, in scenes where the emitter was easily reach-
able by the sensor rays and vice versa, PCBPT incurred an
overhead.

In this sense, our results are in line with those of Popov
et al. [9]. They reported an average ratio of 6.4 between
the L1 errors of BDPT and PCBPT for images rendered
using the inner paths, whereas for our tests, the average
ratio of the RMSE equaled 5.4. It should be noted that
all of our tests were done with the same value for K. We
are confident that further improvements can be attained
by fine-tuning the parameters. We were unable to test our
implementation on the scenes they used as they were not
publicly available.

The method could be improved by automating the pro-
cedure of choosing the values for M and K, such that there
is less overhead for relatively simple scenes. PCBPT is
orthogonal to methods which improve performance for
paths where s < 2 or t < 2, as well as methods which
help with specular-diffuse-specular paths, such as vertex
connection and merging [5], or Metropolis light transport
[12]. Other PMF sampling strategies could be devised and
joined together with MIS. Regarding our implementation,
future work would need to verify the correctness of the
MIS weights. Further experimentation could be done with
the parameters, as all of our tests were done using the same
values for M and K.

As shown in our results, PCBPT is a simple, yet powerful
method for variance reduction of contributions produced
by inner paths. For the most difficult scene, we were able
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to improve the RMSE by 11% compared to BDPT when
taking into account both inner and outer paths, and by 13%
for just the inner paths.
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