
Progressive Spatiotemporal Variance-Guided Filtering

Jan Dundr*

Supervised by: doc. Ing. Jiřı́ Bittner, Ph.D.†

Department of Computer Graphics and Interaction
Czech technical university in Prague

Prague / Czech Republic

Abstract

Path tracing is still very hard to do in real-time due to
its complex recursive light interactions: even the newest
GPUs struggle to keep real-time framerates for more than
just a few samples per pixel, which can lead to a very noisy
output or even no useful data for some more problematic
areas.

This paper uses a recent approach to processing the
resulting image: demodulated samples are accumulated
from previous frames using reprojection and subsequently
filtered by a fast bilateral filter constrained by normals,
depth, and variance (which will stop blurring valuable de-
tails). This results in a temporally stable noise-free output
which converges in a few frames.

We implemented the method using OpenGL and in-
corporated it in an existing high-performance CPU path
tracer. We extended the method by putting it in the pro-
gressive rendering framework, where initially less than
one sample per pixel is shot to increase interactivity. We
evaluate the performance and visual quality of this algo-
rithm in several test cases with mostly diffuse illumination.

Keywords: path tracing, global illumination, real-time
rendering, bilateral filtering, temporal filtering, OpenGL

1 Introduction

Computing accurate real-time illumination of a 3d scene is
a hard problem. The rendering equation [4] is conceptially

*breyloun@gmail.com
†bittner@fel.cvut.cz

simple: outgoing radiance at a surface location is equal to
emitted and reflected radiance using an appropriate BRDF
model. This must, however, be true for every surface posi-
tion in the scene and the resulting integral is too complex
to be solved analytically. Path tracing [4] (and its many
optimized variants) has been the golden standard for cal-
culating a global illumination with photorealistic results
for a long time. It approximates the lighting equation in
a Monte Carlo fashion by shooting a large number of ran-
domized rays into the scene.

This process can consistently simulate a lot of otherwise
hard to fake light phenomena (like caustics, depth of field,
etc.) and is very general (one standard setup leads to a
photorealistic lighting results with many complex lighting
phenomena), but computing a single image can take min-
utes, hours or even more. GPUs can help: rendering is
much faster for simple scenes and a few times quicker for
more complex ones (due to big and incoherent memory re-
quirements, if they even fit there). Real-time applications,
on the other hand, require at least tens of frames per sec-
ond.

Our filter works with path-traced image as an input.
Very low sample count (around 1 sample per pixel) is used
to keep real-time framerates, light is accumulated from
previous frames using reprojection, and the image is fil-
tered both in space and time using a fast wavelet-based
bilateral filter constrained by normals, depth, and vari-
ance (pixels are filtered more when there’s a larger vari-
ance). The whole process is implemented on GPU using
OpenGL, it is executed in a matter of milliseconds even on
weaker GPUs and aims to use spatially and temporally lo-
calized data. It significantly increases apparent sample rate
(results looks like more samples were used) at the cost of
bias in situations when there is not enough data yet.

Algorithm needs normal and depth buffers every frame.
These buffers can be either generated by primary rays dur-
ing path tracing or rasterized beforehand. Rasterization
is usually faster, but complicates implementation (some-
times requires a completely new rendering pipeline) and
can be much slower in case of very complex scenes.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Related work

There are many methods to achieve global illumination,
Ritschel did a nice overview [7] of them.

Most of the fast real-time systems (30 frames per second
and more) use a rasterization approach to lighting: they
approximate light by a few fast vector operations, pos-
sibly using a shadow map (this is a very crude simplifi-
cation) and everything is computed on a GPU in matter
of milliseconds. Some GI approximations can be found
even here: using a constant value everywhere, static light-
ing baked into a scene, light probes or contact shadow
approximation by screen-space ambient occlusion (possi-
bly using its two-layer variant from Mara [5]). None of
these approaches are really used in this paper (with a pos-
sible exception of generating albedo, normal and velocity
buffers using rasterization).

There are other approaches approximating light using
more exact methods: Instant radiosity solves only dif-
fuse lighting using simplified geometry, photon mapping
works with both rays from the light and a camera which
estimates caustics better, voxel cone tracing shots cones
instead of rays and samples lower-resolution scene when
broader range is needed... Some of these methods are real-
time or near real-time, they usually approximate some part
of the rendering equation.

Our filter, however, is applied to the path tracing out-
put and should be able to approximate rendering equation
much better. It is based on a recent paper from Schied [8]
with an extension to use even fewer samples per pixel
and a few experimentally found tweaks and simplifications
(like a smaller kernel used and omitted spatial variance es-
timation).

Some similar techniques spawned around recently. Us-
ing a machine learning approach by Chaitanya [1] have
very good output as well, but they are still much slower
using a top of the line GPU (around 50 ms on Titan X
Pascal). A very similar paper with comparable results by
Mara [6] ignores variance and relies on a more compli-
cated bilateral filters instead. Results of this paper look
very comparable to Schied [8], the differences are yet to
be determined. Silvennoinen and Lehtinen [9] with in-
teresting results took a bit different approach and relied
on automatically generated GI probes: this method is a
bit more dependent on scene geometry and it’s unclear
how it’ll behave under motion. Edge-Avoiding À-Trous
Wavelet filtering by Dammertz [2] and later modifications
by Hanika [3] were used as a part of our algorithm.

3 Paper structure overview

Section 4 is dedicated to the basic algorithm explanation.
The section begins with a high-level overview of the algo-
rithm stages. Each stage is then described in its subsec-
tion. Section 5 then modifies some parts of the algorithm
to be able to accept even less than one sample per pixel.

Figure 1: albedo, normal and velocity buffers

Section 6 tells us about the implementation and its results
and, finally, section 7 closes the paper by stating method’s
limitations and possible enhancements in the future.

4 The basic algorithm

Let’s assume the basic version of the algorithm: we have
one sample per pixel of lighting, normal, depth, albedo
and velocity buffer 1 as input (these could come from a
path tracer or a rasterizer). We will filter only a diffuse
lighting component to simplify our reprojection (described
later in Section 4.2). The algorithm can be divided into five
consecutive parts:

1. diffuse lighting extraction: diffuse lightig is isolated

2. accumulation: current frame is blended with the last
one (without the spatial filter or from the first level)

3. variance smoothing: variance is filtered to alleviate
artefacts

4. spatial filtering: some pixels from close neighbor-
hood are blended, determined by constraints

5. blending: the resulting frame is blended with the last
one to achieve even less noise and antialiasing

4.1 Diffuse lighting extraction

Diffuse lighting component is extracted from path tracer
in some way. Path tracer itself ideally outputs diffuse light
separately from the other output. It’s possible to work with
a path tracer as a black box if we don’t want to or can’t
modify part of it: we can approximately reconstruct a dif-
fuse component by dividing the result by albedo (or using
more complex methods). Specular light can now, however,
get badly reprojected and/or blurred.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: algorithm overview

Figure 3: one sample per pixel input

4.2 Accumulation

Current light buffer 3 (path tracing output) is blended with
the one from the previous frame. Previous frame (actu-
ally the first level of wavelet filtering from the last frame,
see Section 4.4) is reprojected into current one using ve-
locity buffer (screen-space offset between last frame and
current frame fragment positions in the world). A frag-
ment is discarded on disocclusion, this is determined by
a big difference between predicted reprojected depth and
actual depth in depth buffer. Only current frame light data
is accumulated in a case of a disocclusion. The formula
for the normal case is:

c = cr+ p(1− r)

r = max(a,
1

age
)

where current frame c and previous frame p is blended
by a ratio r. age is a number of frames without disocclu-
sion of a current fragment. r = 1

age alone would blend cur-
rent light indefinitely, but any reprojection errors would be
visible for a long time. We can start discarding old infor-
mation at the expense of more noise by enforcing a mini-
mum r by a parameter a. Values around 0.1 proved to be a
good compromise.

Path tracing estimates the lighting by a Monte Carlo
method: it varies ray directions randomly and that’s why

0.0625 0.125 0.0625

0.125 0.25 0.125

0.0625 0.125 0.0625

Figure 4: 3×3 kernel used multiple times in the algorithm
(many possible kernels can be used here)

there is so much noise in the output when using too few
samples. Different parts of the image can have different
amount of noise: many of them may be completely lit,
some of them might and might not be occluded. That’s
why the resulting light intensity can have a large vari-
ance: this is the variance we are trying to estimate to
constraint our denoiser. Light intensities in consecutive
frames can be understood as multiple samples, so the vari-
ance is acually both variance in time and variance of mul-
tiple samples. A term “variance” in this text can be un-
derstood more specifically as a variance estimation: we
are estimating the true variance from a few frames we can
work with.

A variance estimation is computed at this stage as well.
We have only limited buffer memory (we can’t calculate
variance by summing samples from a few last frames) so
we will use this formula:

var(x) = ∑x2− (∑x)2

We only need to store ∑x and ∑x2 by two scalars in
buffer memory, we can blend them in the same way as
our light buffer. x in this equation is a luminance of a
current pixel: we convert RGB values to luminance before
computing variance using a formula:

grayscale = 0.299R+0.587G+0.114B

This saves us valuable memory. Variance computation
for each color component is possible as well, but that
would help us in a narrow set of conditions (human vision
focuses on detail).

4.3 Variance smoothing

Variance obtained in this way can be very noisy and can
lead to some artifacts. We can alleviate this problem by
blurring variance buffer by a small 3×3 kernel 4: we don’t
lose much spatial information this way and there are no
isolated pixels, therefore results are much better 5.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: variance smoothing (smoothed on the right)

Figure 6: wavelet-based filtering visualization for one
pixel and 3 leveld (instead of five), colored pixels have
non-zero coefficients and rows are the filtering passes

4.4 Filtering for progressive rendering

We accumulated some samples from a few previous
frames and computed their variance. Now we can filter
them spatially. We will constrain the blurring by normal,
depth and variance buffers from previous steps using a bi-
lateral filter and three similarity weight functions defined
later.

We still have a lot of noise in our light buffer; a rel-
atively extensive bilateral filter is needed. Calculating
this bilateral filter in a classical way would be very slow,
that’s why we used a hierarchical approach based on Edge-
Avoiding À-Trous Wavelets[2].

This approach filters the input in multiple passes. Each
pass uses the same kernel and processes the same, unre-
sized buffer, but with different step size (2N for the Nth
pass, N = 0, 1, 2, etc.) 6. The passes filter large scale first
and the small scales last, which filters any high-frequency
artifacts caused by the earlier passes [3].

We use 5 filtering passes, each using 3× 3 kernel4.
Original paper used 5× 5 kernel, but we found 3× 3 ker-
nel is much faster on lower performance hardware and
the quality of results is still ok (6 passes could be used
if smoother results are needed). Five passes of 3× 3 ker-
nels effectively simulate 61× 61 bilateral filter with the a
smooth kernel.

The order reversal wasn’t in the original paper, and it
isn’t obvious that variance steering function still works
correctly with it, but it does in practice. The output of
the first level is used as a previous frame in reprojec-

Figure 7: first four wavelet levels, in reading order

tion phase (see Section 4.2) to gain some additional spa-
tial smoothing of the temporal accumulation: it therefore
needs to be done on the smallest scale. This could intro-
duce artifacts in some cases but works well enough in prac-
tice 7 (4 more levels hide any residual artifacts).

4.4.1 Normal weighting function

Normals are weighted by a dot product of their angles. As-
suming N0 to be the first normal and N1 offset normal be-
ing blended:

wN = max(0,N0 ·N1)
σN

Fragments with similar normals are blended this way.
Exponent σN controls how similar normals need to be to
be blended, values around 64 work well.

4.4.2 Depth weighting function

Depth information is a bit harder to weight: depth can
differ wildly when sampled in screen space, a simple dif-
ference is not satisfactory. We approximate a local slope
given by screen-space depth derivatives and define our
weight function by a deviation from this slope:

wD = exp(
−|D0−D1|

|σD(grad ·o f f)|+ ε
)

D0 is the first depth, D1 is the offset depth being blended
into it, grad is the gradient approximated from screen-
space derivatives, o f f is screen-space offset of D1 from
D0, ε is a small value to avoid division by zero (depends
on the scale of depth values used, around 0.005 works fine
for a normalized depth buffer) and exponent σD controls
a threshold of quantization artifacts (leaving at 1 was god
enough for us).

This depth weight function works fine in most of the
cases except very steep and narrow sides. Very narrow

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: filtering without (left) and with (right) variance,
sharp shadows and shadows far away get over blurred

and steep parts of the depth buffer have a very little infor-
mation to filter through and result in a visible noise. The
noise is blended into the following frames and can be no-
ticeable for a long time. That’s why we turn off the depth
weight function for too steep gradients: normal weight is
sufficient in this case.

4.4.3 Luminance weighting function

Light buffer filtered this way would erase all the valuable
detail formed during path tracing even in scenes without
direct lighting8. That’s not what we want, and that’s why
there is a third, most interesting weighting function. We
don’t want to blend samples with different luminances, but
luminance itself varies wildly in the noisy output. We have
variance at our disposal: samples with high variance are
noisier and need to be blurred more. This gives us our
luminance weighting function:

wL = exp(
−|L0−L1|
σLvar+ ε

)

L0 is the first luminance value, L1 is the offset value
being blended, var is our accumulated and prefiltered vari-
ance, ε is a small value to avoid division by zero and offset
minimal noise (depends on input noisiness and dynamic
range, typically somewhere around 0.01 and 0.1) and ex-
ponent σL controls filtering strictness (4 works well).

Variance approximation can be unusable for a few
frames after disocclusion. There are multiple possible
ways to handle this: we can turn off the weight entirely or
we can approximate spatial variance from the light buffer
instead. The former option always blurs the lighting when
there is not enough data and the latter can achieve better
quality at the cost of additional calculation using e.g. an-
other bilateral filter.

While the variance calculation in the first level of the
À-Trous transform is accurate, we don’t want to blend the
light buffer in other levels as much. We can steer the vari-

ance weight function using weight computed in the previ-
ous level to avoid blurring light buffer too much:

varL+1 = w2varL

varL+1 is a variance one level higher than varL and w is
the complete weight from the last level. All three weights
are combined into it like this:

w = wN ·wD ·wL

This resulting weight is then used to adjust the À-Trous
transform kernel.

4.5 Blending

We have much smaller amounts of noise at this stage, but
there’s still one big problem: edges in the normal and
depth constraints are not aliased and create jagged lines
in the output. We can deal with this the usual real-time
way: blending with reprojected last frame.

First, we modulate back albedo into the frame and apply
tone mapping (if there’s any), we will remove jagged lines
from the output itself. Then we can reproject the previous
frame the same way as we did in the reproject phase, but
we will ignore our predetermined disocclusions (they are
aliased) and always apply the same ratio r:

c = rc+(1− r)p

We will look at the 3×3 neighborhood of current frag-
ment, find the largest and the smallest value and push the
previous fragment to this range if it’s outside, then we
blend them the standard way. A slight indiscernible noise
can be added to the output to alleviate any shifting arti-
facts.

Some more advanced algorithms could be preferred for
problematic cases, but this one works fine for most ordi-
nary scenes. It adds one last step to the filtering as well
(it filters the changes between frames during the wavelet
filtering) and there is hopefully no noise left.

5 Fewer samples

The previously described algorithm works well, converges
very quickly (visually around four frames) and handles re-
projection well. It’s, however, quite often a case that it
isn’t possible to path trace even single sample per pixel in
real-time (that means the quality on 3 is achieved only af-
ter multiple frames). The original algorithm was extended
so it works as expected even in the case of using less than
one sample per pixel.

Missing normal and depth information: It can happen
that we no longer have any information about normals or
depths in some fragments (in case we’re not rasterizing the
GBuffer on GPU). We need to approximate missing values
somehow.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Simple and efficient way to do this is interpolating val-
ues in 3×3 neighborhood hierarchically [10]: average lo-
cal samples using a 3N texture pyramid and then propagate
them back, filling the holes on the way. This smooths out
all edges, and a smarter filter could be used, but it doesn’t
make that significant difference in the end anyway (normal
and depth buffer converge faster than path tracing output).

Reprojection phase: even new samples, not only previ-
ous, can have missing values. Values in the light buffer
must be ignored when new missing value arrives: light ac-
cumulation, reproject ratio and variance all need to stay
the same.

Variance filtering: missing values can’t be overwritten
from neighbors.

Wavelet filtering: missing values need to be skipped
during weighing. This assumes at least some samples in
every 61× 61 rectangle (effective kernel size), but that’s
usually the case (it would be a very ineffective path trac-
ing anyway).

Aliased edges: There are not enough samples on the ob-
ject edges to provide any supersampling. Some blurring
must be introduced at least initially: FXAA or a similar
post process is a good choice.

Reusing the first wavelet filtering level for reprojection
is an issue with a small number of samples as well: there’s
blurring happening every step even on previously un-
touched samples which results in continuous over blurring.
This issue doesn’t disappear by weakening the wavelet fil-
tering; new samples need special care. One solution is ap-
plying the reprojection from first wavelet levels only once
full sample per pixel gets accumulated. This, however, in-
troduces a slight smoothing visual skip in the movement as
new wavelet smoothing is performed every N frames. That
can be alleviated by using an additional buffer always one
step behind and blending the real result with this buffer
continually, so there is only gradual change.

6 Implementation and results

We implemented the algorithm into the existing high-
performance CPU renderer in its using OpenGL in its
progressive version: it can take about 2 seconds (50-100
frames) on a laptop CPU to generate one sample per pixel.
There is more noticeable noise and smoothing during ren-
dering and reprojection, but it quickly converges to the
right result as more samples are accumulated.

I used 4-core 8-thread Intel Xeon E3-1240v3 CPU and
NVidia 760 GPU when benchmarking. A single view of
the car was tested using resolution close to 720p (1366×
690). CPU took 20.360 ms (median value) to render one
frame (1

128 samples per pixel on average) and GPU went
trough all the filtering process in 4.666 ms (median value)
per frame. CPU and GPU processes could run mostly in
parallel.

The algorithm is very stable and practically content in-
dependent: shaders do exactly the same work every time.

frame 5, 0.08 seconds

frame 20, 0.32 seconds

frame 88, 1.4 seconds

frame 190, 3.16 seconds

Figure 9: Output of CPU renderer (left) and our filter
(right) in 720p with 1

128 samples per pixel per frame

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

The only exception is reprojection during accumulation,
which can cause a large number of cache misses if the re-
project misses is too far. The perfomance dip is negligible.

Results from CPU implementation (with uniform sam-
pling and a blur shader) are compared to the output of our
filter 9. There are some tonemapping issues and aliased
edges: the algorithm is still being developed. There are
some advantages of our algorithm that are not visible on
this comparison: the solution is stable under motion and
new information is blended in on the fly. There is not much
detail in the image until the samples start to overlap: accu-
rate variance estimation is the most important requirment
for our algorithm. Albedo in primary rays is replaced with
white color for clarity.

7 Conclusion and future work

The filtered results converge to an image similar to ground
truth after a few frames, with some amount of oversmooth-
ing present. It is obvious that the filter is fast enough for
real-time application due to its simplicity (even using not
that powerful GPU). Higher performance of the filter com-
pared to the original paper [8] is achieved mainly by using
less demanding 3×3 wavelet filter kernel (instead of orig-
inal 5× 5) and ignoring the optional spatial variance es-
timate (this could enhlance the quality a little bit). The
algorithm is practically data-independent and the execu-
tion time scales linearly with number of pixels (so it runs
around 10 ms at fullHD).

It can significantly filter path tracing in a real-time set-
ting to the point the noise is gone in most of the scene af-
ter a just a handful of frames (when using one sample per
pixel) and works well even with reprojection. There are
some limitations to the current approach, some by design
and some can be fixed by a bit different implementation.

The algorithm always needs at least incomplete nor-
mals and depth values (or similar metrics) to constrain the
edge-avoiding wavelets, so visibility needs to be implic-
itly known right away and can’t be stochastically sampled.
But simple effects such as depth of field, motion blur etc.
can be easily approximated in screen space. It wouldn’t be
hard to implement more GBuffer layers for partly trans-
parent content; one more layer might even fit in the same
pass using some clever memory management.

The algorithm currently filters diffuse light component
only. It partially works with reflections as well, but re-
projects them wrongly and blurs them in the process. An-
other pass with better reflection reprojection (or rejection)
would be needed, which isn’t complicated to implement.
More passes for hard and soft diffuse lighting is also pos-
sible (if one prefers noisier input for certain parts of an
image), but not necessary; hard shadows are handled well
(quicker when variance converges sooner).

Some noise can be visible in large dimly lit areas of the
image even after all filtering due to too little data available.
This problem could be solved by tweaking the smoothing

parameter for dark parts of the picture.
If light moves or part of a scene moves, new parts of

the scene can appear slowly, they are blended into the
old ones. That’s because there is no rejection registered.
This can be fixed by allowing previous frames are blend-
ing only to the pixels with a similar neighborhood and re-
jecting them otherwise; special scene-dependent handling
seems unnecessary. I am experimenting with this algo-
rithm as my diploma thesis: I would like to implement
this feature in it in time, that would make this algorithm
genuinely real-time even for dynamic scenes. The other,
more straightforward and a bit hacky option is doing more
path tracing calculations with a shorter blending time. Er-
ror would be less obvious this way.

The algorithm currently handles cases with one or fewer
samples per pixel. The straightforward way of implement-
ing more samples per pixel (just blending them) would
waste some detail in variance: the correct way would be
summing the squared terms both inside one multisample
and then between samples to arrive at an accurate variance
estimate. I would like to implement this as well if there
will be time.

References

[1] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan,
Christoph Schied, Marco Salvi, Aaron Lefohn,
Derek Nowrouzezahrai, and Timo Aila. Interactive
reconstruction of monte carlo image sequences us-
ing a recurrent denoising autoencoder. ACM Trans.
Graph., 36(4):98:1–98:12, July 2017.

[2] Holger Dammertz, Daniel Sewtz, Johannes Hanika,
and Hendrik P. A. Lensch. Edge-avoiding À-trous
wavelet transform for fast global illumination filter-
ing. In Proceedings of the Conference on High Per-
formance Graphics, HPG ’10, pages 67–75, Aire-la-
Ville, Switzerland, Switzerland, 2010. Eurographics
Association.

[3] Johannes Hanika, Holger Dammertz, and Hendrik
Lensch. Edge-optimized a-trous wavelets for lo-
cal contrast enhancement with robust denoising.
30:1879–1886, 09 2011.

[4] James T. Kajiya. The rendering equation. In Pro-
ceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’86, pages 143–150, New York, NY, USA,
1986. ACM.

[5] M. Mara, M. McGuire, D. Nowrouzezahrai, and
D. Luebke. Deep g-buffers for stable global illumi-
nation approximation. In Proceedings of High Per-
formance Graphics, HPG ’16, pages 87–98, Aire-la-
Ville, Switzerland, Switzerland, 2016. Eurographics
Association.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

[6] Michael Mara, Morgan McGuire, Benedikt Bitterli,
and Wojciech Jarosz. An efficient denoising algo-
rithm for global illumination. In Proceedings of High
Performance Graphics, New York, NY, USA, July
2017. ACM.

[7] Tobias Ritschel, Carsten Dachsbacher, Thorsten
Grosch, and Jan Kautz. The state of the art in inter-
active global illumination. Comput. Graph. Forum,
31(1):160–188, February 2012.

[8] Christoph Schied, Anton Kaplanyan, Chris Wyman,
Anjul Patney, Chakravarty R. Alla Chaitanya, John
Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron
Lefohn, and Marco Salvi. Spatiotemporal variance-
guided filtering: Real-time reconstruction for path-
traced global illumination. In Proceedings of High
Performance Graphics, HPG ’17, pages 2:1–2:12,
New York, NY, USA, 2017. ACM.

[9] Ari Silvennoinen and Jaakko Lehtinen. Real-time
global illumination by precomputed local reconstruc-
tion from sparse radiance probes. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH
Asia), 36(6):230:1–230:13, November 2017.

[10] M. Solh and G. AlRegib. Hierarchical hole-filling
for depth-based view synthesis in ftv and 3d video.
IEEE Journal of Selected Topics in Signal Process-
ing, 6(5):495–504, Sept 2012.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

	Introduction
	Related work
	Paper structure overview
	The basic algorithm
	Diffuse lighting extraction
	Accumulation
	Variance smoothing
	Filtering for progressive rendering
	Normal weighting function
	Depth weighting function
	Luminance weighting function

	Blending

	Fewer samples
	Implementation and results
	Conclusion and future work

