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Abstract

With the growing number of consumer-oriented depth sen-
sors like the KinectV2 or the newly released Phab2Pro, the
question of how precise these sensors are arises. In this
work we want to evaluate the average noise in the gener-
ated depth measurements in the axial direction and the lat-
eral directions. As part of a two-part project this work will
view the noise’s development with varying distance and
angle. We will present and evaluate two empirical models
describing the noise behavior, with the first being derived
from solely this part’s measurements and the second one
being a combination of the previous model and the model
of Köppel et al. [7]. These derived models can be used in
a post-processing step to filter the generated depth images.
We evaluate our models through statistical and experimen-
tal testing.

Keywords: noise model, surface reconstruction, sensor
noise

1 Introduction

Over the last years several customer-oriented depth sen-
sors arrived on the market. These sensors allow to record
the distances to the closest objects, which is particularly
useful for segmentation and recognition purposes. The
Kinect series, from Microsoft, consists of such sensors.
Although it was created for gaming purposes it was also
used by businesses and scientists. This resulted in many
papers dealing with the use of the Kinect in robotics
[2], human- [13], gesture- [9] and object-detection [6],
medical visualization [4] and many more. Just recently
this technology found its way into smartphones. The
Phab2Pro, from Lenovo, uses a sensor similar to the one
in the KinectV2, but in a much smaller size. The provided
data is used for augmented reality apps. The problem
with most of these affordable depth sensors is that they
are prone to have high amounts of noise (measurement
errors) in their generated depth images. Errors in the
depth measurements may lead to problems for different
applications, for example, reconstructed surfaces and
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objects may have lots of small bumps or holes. One
successful way to reduce this problems is filtering the
measurement results using an empirically derived model
of the sensor noise.

This paper presents one part of a two-part project, trying
to estimate elaborate empirical noise models for both the
KinectV2 and the Phab2Pro. Our main contributions are
as follows:

• Presenting an extraction algorithm for planar targets
in depth images

• Extracting sensor noise in axial and both lateral di-
rections

• Estimating empirical models describing the noise
based on the target’s distance and rotation

• Extending the estimated models by a weighted com-
bination with a second model

• Validation of the derived models by measuring a
well-defined object

This paper is structured in such a way that in Section 2
the previous work done in this research field will be briefly
described. Following in Section 3 the sensor technologies,
their error sources and the ways to analyze these errors
are described. In Section 4, we present the experimental
setups and the processing steps to estimate the noise mod-
els. After that, we present the results in Chapter 5 together
with the estimated models for the experiments of this pa-
per and the one which resulted from the combination with
the model of another project. Furthermore, we show the
results of a simple evaluation where we analyzed the qual-
ity of our models by comparing them to preceding models
in the literature and by evaluating them with a simple ex-
periment. Finally, in Chapter 7, we discuss the results of
our work and how it could be improved.

2 Related Work

One of the first papers that deals with the problem of
noisy KinectV1 depth measurements was written by
Khoshelham et al. [6]. They showed the need of a
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calibration procedure, but also statistically analyzed the
measurement error in regards to the distance between the
sensor and a planar surface. Based on this paper, Nguyen
et al. [8] extended the previous experiment with the
KinectV1 to additionally estimate the noise in regards to
the angle of the surface. The resulting data was then used
to extend the KinectFusion reconstruction pipeline which
led to improved results. That this type of experimental
setup is also applicable for the KinectV2 was shown by
Fankhauser et al. [3], who evaluated the suitability of
the KinectV2 as a sensor for mobile robots. Their work
extended the previous experimental setup of distance and
angle with an additional influx of sunlight.

While these papers provided the basis for large parts of
this project: namely the experimental setup and the esti-
mation of the noise model based on target distance and
rotation, the final model was created through a collabora-
tion. Köppel et al. [7] estimated in their project the effects
of the target’s distance and image position on the noise of
both the KinectV2 and the Phab2Pro. By measuring a 3D
checkerboard pattern at several different locations in the
view frustum of the sensor, they were able to extract the
image position dependent noise in axial and lateral direc-
tion.

3 Theory

Both, the KinectV2 and the Phab2Pro, are time-of-flight
sensors. [10] They estimate the distance of objects
by measuring the travel time of infrared light pulses.
Compared to other depth sensing technologies, like
structured-light or laser-based ones, this architecture has
several advantages. Firstly it is rather simple without the
need of moving parts or a wide aperture and secondly
depth sensors using this principle generally have rather
high frame rates, some even above 100 frames per second.
But this architecture also has some problems, namely its
susceptibility to other infrared light sources like the sun
or other time-of-flight sensors. Additional factors like
temperature of the camera [1] and reflectiveness of the
measured objects may also influence the results.

This work mainly focuses on analyzing the systematic
error (which remains after a calibration procedure) and
its relation to the distance and rotation of an object. To
calculate an error model we use a stochastic approach
where the error is calculated based on the difference
between measurement results and ground truth infor-
mation. Other works have shown that this approach is
suitable for time-of-flight sensors. [3] The systematic
noise has axial and lateral components that need to be an-
alyzed separately as previously shown by Nguyen et al. [8]

The axial noise describes the depth measurement error
along the z-axis. In general, it describes the average dif-

ference between the measured depth and the actual depth
(as seen in Figure 1). This type of error is determined by
measuring a flat surface, fitting an ideal plane though the
measurement points and then calculating the difference
between the measurements and the assumed surface
plane. [8] Because the noise is assumed to have a normal
distribution (Nguyen et al. [8] and Fankhauser et al. [3]),
the standard deviation can be used as a characterizing
parameter.

x

z

θ

Figure 1: Axial noise along the face of the planar target

The lateral noise is a measure for the pixel deviation
along the two image axes x and y. It describes how much
the measured point is vertically or horizontally misplaced
compared to the actual point on the object. To measure
this, the plane is placed in such a way that its border points
are measured as straight lines. The difference between the
presumed border line and the measured one is the lateral
noise (as seen in Figure 2). This noise can be measured
for the x- and the y-direction. [8] Previous works showed
that the resulting distribution is only partially described
by a normal distribution, but because many frameworks
assume this distribution, the standard deviation is used as
a measure. [3]

y

x

Figure 2: Lateral noise alongside the edge of the planar
target
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4 Method

In this section we will describe the experimental setups we
used in our work, as well as the processing steps we took to
extract the valuable data from the measurements and how
we calculated the noise models.

4.1 Experimental Setup

Our test setup (as seen in Figure 3) was nearly identical to
the ones used by Nguyen et al. [8] and Fankhauser et al.
[3], which were based on Khoshelham et al. [6]. As the
target a wooden press board with a faint white surface was
mounted onto a tripod. The board itself was placed on
a rotation device, which is used in photography to rotate
a camera to a certain angle. This allowed us to extract
the angular noise characteristics by rotating the plane
vertically from 0◦ to 80◦. The camera in our setup was
placed on a wooden construct that in turn was standing on
a desk in front of the fixed target. We used a metal tape
ruler as a rail for our camera construct while we moved
it from 0.9 m to 3.0 m in intervals of 0.1 m to capture
the distance dependent noise characteristics. Before the
measurements were started, the camera was running for at
least 30 minutes to reduce temperature dependent errors
[1]. After that, the test procedure started at 0.9 m at 0◦. At
each setting of distance z and angle θ 200 images were
taken. 100 images with the camera in a horizontal position
and 100 in a vertical position to capture the lateral noise
in both x- and y-direction.

4.2 Plane Extraction

After the point clouds were captured they were subject to
several preprocessing steps to ensure a valid noise estima-
tion. First the image distortion of the cameras was ac-
counted for by applying a standard calibration procedure.
For the KinectV2 we used a checkerboard pattern printed
on an A4 sized paper as a reference [12] and took sev-
eral infrared images with the pattern at different positions
and rotations. These images were then used by a camera
calibration tool to estimate the concrete camera parame-
ters, which in turn allowed us to undistort the depth im-
ages. [14] The Phab2Pro removes lens distortions by de-
fault [5] in their reconstructed point clouds. After that, we
extracted the position of the plane in the measurements to
serve as a region of interest for further calculations. This
was done by applying an automated pipeline consisting of
several image processing steps (which can be seen in Fig-
ure 4):

1. Create Binary Image - An estimated depth threshold
based on plane distance and rotation was applied to
transform the image into a binary format.

2. Mask Out Unused Regions - A manually selected
region was used as a mask to reduce the influence of

Figure 3: Images of the setups for the two different sen-
sors, consisting of a fixed, wooden plane and a moving
construct for the sensor

the surrounding objects.

3. Remove Noise - The amount of noise in the image
was reduced by a hole filling algorithm and by first
dilating and then eroding the image.

4. Erode and Dilate Plane - A structure element shaped
like the plane was calculated and used to erode and
dilate the image, effectively removing other objects.

5. Calculate Bounding Box - The remaining white re-
gion was assumed to be the plane and so its bounding
box was extracted.

4.3 Noise Extraction

Using the estimated position of the plane in the depth mea-
surements the lateral and axial noise could be calculated.
For the lateral noise the two plane border regions on the
left and right side were selected. By combining a thresh-
old and a Canny edge detector the border pixels were ex-
tracted. A vertical line was fitted through them and the
resulting standard deviation of the pixels was assumed to
be the lateral noise σL[px]. As the result was pixel based,
it had to be transformed to a metric measure using the es-
timated camera parameters. The axial noise region was
selected by shrinking the bounding box by around 20% to
remove possible influence of the lateral noise. The points
inside this region where selected and a plane was fitted
through them. The axial noise σA[mm] was then estimated
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(0) Initial Image (1) Create Binary Image

(2) Mask Out Unused Re-
gions

(3) Remove Noise

(4) Erode and Dilate Plane (5) Calculate Bounding
Box

Figure 4: Processing steps of the plane extraction al-
gorithm, starting with a depth image and ending with a
bounding box for the planar target

by calculating the standard deviation of the points from the
plane.

4.4 Model Estimation

Using the resulting noise estimations, empirical models
can be drawn from the data. For the first model we used
the distance z and surface rotation θ as input parameters.
The second model was created by adding two parameters x
and y for the image position of a measurement. It was cre-
ated by combining the first model with the model created
by Köppel et al. [7]. We defined a good model as being
both able to describe the underlying data as close as pos-
sible, while still remaining general enough to be able to
predict unmeasured values. For the first constraint fitting-
quality measures like the RMSE were used. The second
constraint is not easily verifiable, for it we tried to have a
function with an as low as possible degree and without too
high jumps between measured values.

5 Results

The first important result of our work is the recognition
rate of our plane extraction algorithm, we estimated this
based on the number of times the plane was detected. As
seen in Figure 5, the recognition rate for both cameras
is 100% for angles between 0◦ and 60◦. For 70◦, the
KinectV2 and Phab2Pro recognition start to suffer from
errors, which grow bigger the larger the distance gets.
Looking at the raw data it was clear that this problem was
due to the high noise at these positions. For each posi-
tion the average detected region was chosen for further
calculations. This allowed us to use all measurements
for a position as long as any region was detected at that
position. For positions where no region was detected due
to the high noise, the noise was assumed to approach
infinity.
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Figure 5: Comparison of the recognition rate of our al-
gorithm for the KinectV2 and Phab2Pro on the complete
dataset

Because the measures used in this work, like the
standard deviation and the noise models calculated from
them, are based on the assumption that the systematic
error is normally distributed, one of our next steps was to
validate this claim. This was done by both looking at the
histograms (seen in Figure 6) of the calculated axial and
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lateral noise and calculating the number of measurements,
whose noise distributions correspond to a normal dis-
tribution based on the Kolmogorow-Smirnow-Test [11].
We tested for a normal distribution at a significance level
of 5%. For the axial noise distribution this shows that
around 80% of the data is describable through a normal
distribution, with most of the not normally distributed
measurements lying at 70◦. The lateral noise for both the
x- and the y-direction do not show clear signs of a normal
distribution. Both of these effects where already observed
by Fankhauser et al. [3].

-5 0 5
[mm]

KinectV2 - Axial Noise

-5 0 5
[mm]

Phab2Pro - Axial Noise

-10 -5 0 5 10
[mm]

KinectV2 - Lateral Noise: X

-10 -5 0 5 10
[mm]

Phab2Pro - Lateral Noise: X

-10 -5 0 5 10
[mm]

KinectV2 - Lateral Noise: Y

-10 -5 0 5 10
[mm]

Phab2Pro - Lateral Noise: Y

Figure 6: Histograms illustrating the noise distribution at
z = 1 m and θ = 0◦ for both sensors in axial and lateral di-
rections. The line represents the fitted normal distribution.

For each position the noise is calculated based on
all measurements. These noise values describe the
fluctuation for a measured depth point on a surface. We
analyzed how the intensity of noise changes with the
two independent variables z and θ . Our axial model can
be seen in Equation 1. The axial noise seems to have a
low linear growth between 0◦ and 40◦ for both sensors.
After that, the noise seems to grow rapidly with higher
degrees approaching infinity. This behavior was already
shown for the KinectV2 by Fankhauser et al. [3], whose
model was adapted for our measurements and additionally
applied to the Phab2Pro. Their function is a combination
of a quadratic part for the distance z and a hyperbolic

part for the rotation θ . While the most coefficients were
fitted, as previously explained, the values for e were found
manually.

σz1 = a+b∗ z+ c∗ z2 +d ∗ ze ∗ θ 2

(π

2 −θ)2 (1)

KinectV2 Phab2Pro
a 2.094 0.3019
b −1.099∗10−3 5.712∗10−4

c 4.048∗10−7 6.183∗10−7

d 6.846∗10−7 2.386∗10−5

e 1.7 1.47

Table 1: Axial Model Coefficients (Equation 1)

Because of the seemingly random nature of the lateral
noise in our measurements, a mathematical model could
not be fitted to the data. To circumvent this problem,
we decided to calculate the 90-percentile to be used
as a plausible upper boundary for the lateral noise in
both directions (as seen in Table 2). This value is
constant for all distances and rotation angles, as no
trend for any variable is visible in the data. It is also no-
table that the noise in y-direction is lower for both sensors.

KinectV2 Phab2Pro
σx1 2.9110 4.1207
σy1 1.9617 3.6665

Table 2: Lateral Models (90-percentile)

The model of this work (Model 1 - σx1 σy1 σz1 ) is com-
bined with the model from Köppel et al. [7] (Model 2 -
σx2 σy2 σz2 , see [7] for the models equation) by multiply-
ing them with a simple weight function w and adding them
up. Although we planed to only average between both
models, our evaluation showed that such a model would
lead to worse results than Model 1. The reason for this
seems to be that the additional noise from a rotated sur-
face outweighs the image position dependent noise com-
ponent. Because of this, our manually determined weight
functions (as seen in Equation 2) assign a higher weight to
Model 1 at higher angles.

w = max(
wa −θ

wa
∗wb +wc,wc) (2)

σx = (1−w)∗σx1 +w∗σx2 (3)
σy = (1−w)∗σy1 +w∗σy2 (4)
σz = (1−w)∗σz1 +w∗σz2 (5)
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Figure 7: Line Plot of the fitted axial model for both sen-
sors with the measurement data represented by the points.
For the measured lateral noise the 90-percentile is used as
an conservative estimate.

KinectV2 Phab2Pro
wa 29 8
wb 0.3 0.2
wc 0 0.3

Table 3: Weight Function Coefficients (Equation 2)

6 Evaluation

As a final step in our work, we evaluated the quality of
our produced models and compared our results to the ones
from previous works. The quality of our models was esti-
mated in two ways: statistically, by comparing key figures
of the fitted models and experimentally, by measuring a
simple object in a real-world situation.

6.1 Statistical Evaluation

The statistical evaluation was applied to Model 1. We es-
timated both the root-mean-square error (RMSE), repre-
senting the standard deviation between the measured and
the predicted value, and the R-square value, describing
how well the amount of variance in the data is described
by our model. For the RMSE, values close to 0 are desir-
able while for the R-square, values close to 1 are optimal.
Our models have RMSE values significantly below 1 mm
and R-square values close to 1. This means our models
are able to estimate the given data rather precisely. For
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w
 [%

]

KinectV2 & Phab2Pro - Weight Function

KinectV2 Model 1
KinectV2 Model 2
Phab2Pro Model 1
Phab2Pro Model 2

Figure 8: Line Plot of the used weight functions for both
sensors.

comparison, the RMSE of Fankhauser et al. [3] was stated
as 0.002 mm, which is approximately 30 times lower than
ours. The reasons for this are not easily identifiable, but
might be a result of different test conditions. By compar-
ing the RMSE of the KinectV2 and the Phab2Pro, one no-
tices that the latter one is nearly four times as high, this
is probably due to the lower signal-to-noise ratio of the
Phab2Pro.

KinectV2 Phab2Pro
RMSE [mm] 0.0633 0.2328
R-square 0.9982 0.9992

Table 4: Axial Model Fit Key Figures

6.2 Experimental Evaluation

The second method of evaluation used a simple setup in
a real-world situation and was used for our combined
model. The setup consisted of a cube of the dimensions
300 mm×300 mm×300 mm that was measured with
both sensors. The cube was placed at different positions,
distances and rotations (to show more or less faces)
and the sensor was hand held. For each depth image
the visible cube faces were extracted. Because of the
simplicity of the cube’s surface and the fixed positions,
the model parameters like rotation and distance could
be automatically determined. The measured noise was
then compared to the estimations made by our combined
model.

For the axial model we calculated the RMSE of the
difference between the measured values and the predicted
ones. As for the lateral noise components, we chose
to verify, if our model could serve as an upper border
by checking, if the noise values are under the predicted
values in 90% of the cases. This way of verifying our
lateral model was chosen, because the seemingly random
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structure of the noise was not predictable with any of our
models and was only defined as the 90-percentile of the
measurements.

Our evaluation indicated that Model 1 is better at higher
angles and Model 2 is better at lower angles. By applying
a weight function to both models, we could adapt to this
and generated a weighted combined model that is better
than its initial components.

The lateral results, seen in Figure 10, show that both di-
rections of our combined lateral models are most of the
time above the measured values, thus they can be seen as
a good upper border for the lateral noise. More concretely,
the percentage of values that are correctly under our bor-
der is around 90% in all instances. In contrast to the axial
model, the lateral models do not seem to need an addi-
tional weight function and could be simply averaged.
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Figure 9: Scatter plots of our experimental evaluation,
each point represents one plane in the image with its color
showing the error between its actual and its predicted noise

KinectV2 Phab2Pro
Model 1 0.8947 2.5146
Model 2 1.5197 4.1739
Combined 0.8926 1.7856

Table 5: Axial evaluation results (RMSE [mm]) for both
sensors

KinectV2 Phab2Pro
X - Combined 94.4 93.4
Y - Combined 94.4 94.8

Table 6: Percent of all values below our estimations of the
lateral noise calculated by our final lateral models

7 Conclusion

In this paper we presented two different models for
estimating the sensor noise in the axial and both lateral
directions. Similar models were already calculated for the
KinectV2, but as of now we are the first to do this kind of
experiment with the Phab2Pro.

We used a test setup consisting of a rotating planar
target that was measured at different distances and
rotations to estimate the noise. At each position two
measurement series were made, one with the camera in
a normal (horizontal) position and one with the camera
(vertically) rotated 90◦ to calculate eventual differences
between both lateral directions. Furthermore, we showed
an automated pipeline to extract the sensor noise.

From these noise measures we derived an empirical
model that used the object’s distance and rotation as
parameters. To further improve this model we combined
it with the model of Köppel et al. [7], whose model used
the image coordinates and the distance of the object as
parameters. For the merging of the two separate models,
we showed the need for a weight function that decides
when to use which model. We used a simple linear
function based on the object’s rotation.

Finally, our empirical models were validated, using
a simple setup, where a cube is placed in a scene with
different distances, positions and rotations. For each
face, the local noise is roughly estimated and compared
to the predictions of our model. The results of the
evaluation indicate that the combined axial model using
a weight function is superior to its component models.
A similar conclusion can be drawn for both lateral models.

Future work could include attempts to improve the com-
bined model like using a more refined weight function
joining the component models. The lateral noise compo-
nent could be further analyzed to come up with a more
concrete model. Furthermore, our generated noise models
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Figure 10: Scatter plots of our experimental evaluation,
each point represents one edge in the image with its color
showing the error between its actual and its predicted noise

could be used to enhance KinectV2 and Phab2Pro depth
data, possibly leading to improved reconstruction results.
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