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Abstract

In this paper, we present a novel approach to calibrate a
4-component setup, consisting of a movable object be-
neath a static arrangement of a colour camera, a depth
camera, and a projector, which was developed as part of
a tactile audio guide to help visually impaired people per-
ceive images. For the static arrangement, we propose a
procedure that allows calibrating all three devices simulta-
neously using a single calibration target with two different
calibration patterns – one printed and one projected. The
application is easy to use, due to the mostly automated cal-
ibration process and the algorithm still achieves reasonable
accuracy for the devices and their respective poses. For the
movable object, a point cloud matching algorithm is im-
plemented to detect its 3D pose with respect to the three
device coordinate systems, when placed beneath the setup.
This allows to register interaction gestures to specific areas
on the object and to project images onto the object.

Keywords: Camera Calibration, Projector Calibration,
Point Cloud Matching

1 Introduction

This work was developed as part of the ARCHES project1

for a tactile audio guide to help blind and visually impaired
people to perceive images and objects (for more informa-
tion see [9]). The images, more specifically paintings, are
provided as 3D reliefs. While in the previous setup the rel-
ative pose of the relief was bound to be static, we present
a method to determine its pose automatically. We are us-
ing the Sprout Pro by HP, an all-in-one desktop computer,
with an included colour camera, depth (infrared) camera
and projector, which can be seen in Figure 1.

Arbitrary placement of 3D objects in front of a properly
calibrated depth camera should lead to immediate recog-
nition at a sufficient accuracy. Additionally, the ability to
determine this pose in a colour camera is advantageous in
order to register gestures to locations on the relief, which
is used as a user interface for the audio guide. Moreover, a
calibrated projector can be applied to highlight specific ar-

1http://www.arches-project.eu/

Figure 1: Setup of the interactive audio guide with the HP
Sprout.

eas for interactive visual feedback, as well as target differ-
ent types of visual impairments. Therefore, calibration and
synchronization of multiple in- and output devices hold
various benefits over a single calibrated component.

In this paper, we show a method to calibrate a colour
camera, a depth camera and a projector and determine their
respective poses using intrinsic and extrinsic camera pa-
rameters. The presented calibration procedure can be per-
formed for all three devices with a single dataset of images
made with the same calibration target. This enables an
easy-to-use, autonomous process that calibrates the whole
setup at once, without any other user input needed.

The pose of a given 3D object is extracted from the in-
formation provided by the depth camera. By placing an
object beneath our setup and finding its pose, the accuracy
of the previously performed calibration can easily be eval-
uated, e.g. by projecting the original image onto the relief
(see Figures 1, 11, and 12).

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

mailto:lluidolt@cg.tuwien.ac.at
mailto:reichinger@vrvis.at
http://www.arches-project.eu/


Figure 2: An application overview.

An application overview is shown in Figure 2. While
the main calibration procedure of the colour camera and
depth camera (operating on the infrared image) relies on
the method proposed by Zhang [12], our contribution lies
in the additional simultaneous calibration of a projector
using the same input images as for the cameras. Moreover,
the pose detection of our reliefs relies on the method of
Drost and Ilic [4].

First, a short introduction to previous work is given in
Section 2. The main contribution of our paper, the calibra-
tion algorithm is described in Section 3. It consists of how
different camera colour channels are used (Section 3.1),
the calibration algorithms of the colour and the depth cam-
era (Sections 3.2 and 3.3), the algorithm of a stereo cali-
bration of two cameras (Section 3.4) and the calibration
algorithm of a projector (Section 3.5). The pose estima-
tion of an object using point cloud matching is described
in Section 4. Finally, results are discussed in Section 5 and
the conclusion stated in Section 6.

2 Related Work

There is a lot of work focusing on a simple and quick way
to calibrate a typical colour camera, for example, using a
1D point system as presented by Zhao et al. [13]. More-
over, self-calibration methods, as presented by Pollefeys
et al. [8], can be done completely without specific cali-
bration patterns. Heikkila proposed a new camera model
with better accuracy [6], yet this has only been proven on
synthetic images. The most common approach was pro-
posed by Zhang [12] and relies on a simple, printed 2D
calibration pattern mounted on a planar surface. Multiple
images have to be taken and furthermore an algorithm to
minimize the projection error for each 2D point is applied.
This method is used in our work for the calibration of both
the colour camera and the depth camera on the infrared
image.

Previous projector calibration procedures, as presented
by Zhang et al. [11], usually only operate on fixed cali-

bration planes, so no simple user interaction is possible. A
different approach proposed by Audet et al. [1] relies on
a prewrap transformation that is gradually improved – this
does not allow for static calibration (granting a clear divi-
sion of the user input by capturing the images and the cali-
bration procedure itself), which is possible in our method.
Cassinelli et al. [3] use two different calibration patterns
(a printed chessboard pattern and a projected dot pattern)
side by side. We are improving this method by allowing
an overlapping of the two patterns, which also leads to en-
abling static input.

Most point cloud matching algorithms rely on very
complex features, for example, Rusu et al. [10] present
a set of 16D features for each point, which will then be
matched. Huang et al. [7] introduce 3D self-similarity
vectors. Drost et al. [5] rely on point pair descriptors with
simple features, like the angle between two vectors and its
length. Due to the simplicity and yet reasonable results,
we will be using this approach in our paper.

3 Calibration

When calibrating a camera using a typical algorithm (e.g.
Zhang [12]), a calibration pattern, for example, a simple
chessboard pattern, has to be captured multiple times from
different positions and orientations. Given that the depth
camera also provides an infrared image in which the pat-
tern can be detected, the capturing of calibration images
can be done without any difficulty for both colour and
depth cameras simultaneously. This also enables simple
stereo calibration that results in the respective poses (e.g.
Bouguet [2]).

A more advanced approach is needed in order to addi-
tionally enable a concurrent calibration of a projector. One
possible technique is projecting a pattern onto a plane and
capturing images with an already calibrated camera. How-
ever, the pose of the plane has to be known in camera space
and should as well vary in position and orientations in the
different images.

So, in order to calibrate all three devices at the same
time, both a printed pattern and a projected pattern has to
be on a plane simultaneously. Cassinelli and Bergström [3]
solved this by using two smaller patterns side by side. Yet
this method requires the projected pattern to dynamically
change depending on the pose of the calibration pattern.

In our solution, we use different colour mappings for
the two different patterns, which allows us to have a static
pattern for the projector, as well as being able to cover
the whole available camera space for the patterns in the
calibration images. The final configuration that worked
best for us can be seen in Figure 3. The whole calibration
procedure is outlined in Figure 4. In our approach user
input is only needed during the capturing of the images,
the calibration procedure itself can be done automatically.
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Figure 3: Calibration pattern using different colour map-
pings: A printed, yellow-grey chessboard pattern and a
projected, red dot pattern.

Figure 4: Calibration outline. The dataset acquisition can
be done with a static setup, independently of the calibra-
tion procedure itself.

3.1 Distinguishing between colour channels

A colour image usually consists of three different chan-
nels: red, green and blue. We will be using those colour
channels to distinguish between two overlapping patterns
in one image. To avoid further interferences between the
patterns and to allow easy automatic detection, we are us-
ing two different patterns: a simple, printed chessboard
pattern for the camera calibration (both colour and depth)
and a dot pattern for the projector.

In theory, we are setting up the projector pattern in a
chosen colour (in our case red), that can solely be seen in
the colour camera from the corresponding colour channel
(also red). We choose one of the remaining colour chan-
nels (in our case blue) and use its complementary colour
(yellow) as the printed camera pattern’s colour. Thus, in
that channel, the printed pigment filters out all blue of the
background lighting, resulting in dark squares that can be
detected, but still lets the red of the projected pattern in the
respective channel pass.

However, the blue squares still influence the “projector
channel” (red), since the primaries of the colour camera
do not exactly match the filter characteristics of the pig-
ments. Therefore, the background of the pattern has to be
evened out by a neutral colour to match the brightness of
the printed pattern’s colour. We chose a matching grey
with dithered black pigments that are used to filter IR light
for calibrating the depth camera. Finally, this procedure
leads to a clear division of the projected and the printed
pattern in two different colour channels.

While this method works quite well under specific cir-
cumstances (e.g., even, white background light, no shad-
ows, etc.), the projected pattern usually cannot be detected
when the background light is too bright, i.e. when there is
too little contrast in the red channel. However, as this pro-
cedure only has to be done once per setup, the final usage
will not be affected by these restrictions.

Specifically, in our application, the projector uses RGB
colour space and therefore directly maps into the cam-
era’s RGB colour space. Small divergences in the pri-
maries (e.g. the projector pattern is still slightly visible in
other channels) are possible – those will be dealt with later
on. The printed pattern relies on the CMYK colour space.
Since this is a subtractive colour space, it “removes” one
part of the RGB colours, letting the other two colours pass.
The black print colour K is the only one detected by the
depth camera because all the other pigments do not affect
the infrared light and let it pass.

While using the Sprout’s built-in camera, an Intel
RealSense F200 3D Camera, consisting of a depth and
a colour camera, another problem occurred: The colour
camera only provides its output encoded in the lossy
YUY2. This pixel format belongs to the YUV family2 and
has a brightness value for each pixel, but colour informa-
tion only for a pair of pixels in the form of U and V. Those
are the colour-difference signals3 of blue minus brightness
(U = B−Y ) and red minus brightness (V = R−Y ). Sim-
ply converting this format to the RGB colour space results
in mixing up the different signals. For this reason, the un-
decoded U and V signals are used in our implementation.

The green channel of the colour camera is contaminated
by red and blue due to the YUY2 colour model and there-
fore is not able to properly divide the input colours, so we
are operating on the two channels left. The red primaries
of the projector and the camera matched better than the
blue ones. This means that when projecting a pattern in
blue, parts of it are still clearly visible in the red camera
signal, while the red projections are hardly detectable in
the blue camera signal. Consequently, a red pattern was
the best decision for the projector. The projected pattern
has to be considerably brighter than the backlight of the
scene to enable a proper differentiation between the pat-
terns in the application, see Figure 5 left.

2http://www.fourcc.org/pixel-format/yuv-yuy2/
3https://www.pcmag.com/encyclopedia/term/

55165/yuv
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Figure 5: Different patterns, from left to right: The dot-projector pattern (red channel from the colour camera), the
chessboard pattern as seen from the colour camera (blue channel) and as seen from the depth (infrared) camera.

By using a yellow pigmented printed pattern and a white
background light, the blue from the colour camera is fil-
tered in the yellow areas, while the grey background is de-
tected. Hence the yellow parts appear darker and therefore
are easy to distinguish from the background, see Figure 5
middle. Also, the blue camera signal is visibly darker than
the other channels, so it produces the least interferences
with them. Moreover, the grey colour of the printed pat-
tern is matched with the yellow brightness, to appear ap-
proximately the same in the red signal, which also allows
a better differentiation for the projected pattern.

In the depth camera, the yellow pigments let the infrared
laser pass, while the grey background stands out clearly,
due to its black pigments, see Figure 5 right.

3.2 Colour camera

The colour camera calibration operates on the blue channel
of its input. A simple algorithm to detect the chessboard
pattern’s intersections is robust enough, so that no adapta-
tions to the input are necessary, even if there are still some
circles visible in the image, see Figure 6.

In order to calibrate a camera, a set of images must
be captured by that camera, containing feature points of
a pattern. The pattern can easily be printed by a colour
laser printer and should be mounted on a planar surface
throughout the process. Multiple images of the pattern
have to be taken from different views. The points of the
used pattern then need to be detected.

Figure 6: Chessboard pattern detected in the colour cam-
era.

Once a pattern has been found in multiple images
(preferably at least ten good snapshots) the calibration al-
gorithm by Zhang [12] can be applied to approximate a
3×3 camera matrix and its distortion coefficients.

These are the intrinsic camera parameters, which is a
mathematical model, that describes the projection from a
3D point to the camera sensor. They will, later on, be used
to define the relief’s position in the colour camera space.

3.3 Depth camera

In our application, we will be using the depth camera for
the pose registration of a relief and to detect hand gestures.
The camera provides a depth image (values of the distance
of each pixel to the camera) and an infrared image. We will
solely be using the infrared output to calibrate the camera.
In this image, no interferences of the projector pattern are
visible, because the projector does not transmit infrared
light and the printed colour pigments do not filter the in-
frared light, except for the black pigment used for the grey
background. The inverted image is used for the chessboard
corner detection. The results can be seen in Figure 7.

All other calibration steps are equal to those of the
colour camera, as in Section 3.2. In our use case, it has
to be kept in mind that the infrared camera covers a bigger
area than the colour camera, so in order to achieve a rea-
sonably good calibration, the outer areas have to be cov-
ered by the pattern with additional images that are only
used for the depth camera calibration.

Figure 7: Chessboard pattern detected in the (inverted)
depth/infrared camera.
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3.4 Stereo calibration

In order to be able to determine the location of an ob-
ject, detected by the depth camera, in the colour camera
space, the transformation, i.e., the extrinsic parameters of
one camera relative to the other, must be found. These ex-
trinsic camera parameters consist of a rotation matrix and
a translation vector.

Again, a pattern must be detected, but to calibrate two
cameras simultaneously the same pattern has to be visible
and detected in both camera views at the same time. Here
the procedure of Bouguet [2] is used. It estimates the rota-
tion matrix and the translation vector between the first and
the second camera coordinate system by minimizing the
total re-projection error for all points in all views.

3.5 Projector

In our application, we are using the projector to highlight
specific areas of our 3D object (relief). To achieve this, the
pose of the object has to be determined in projector space.
The projector calibration relies on the red channel of the
colour camera. Since the contrast of the red dots with re-
spect to the background can be very low, a few adaptations
have to be made to the images before applying a grid circle
detection algorithm.

The detection is only successful on very clear input,
therefore it has to be filtered beforehand. We implemented
a local adaptive contrast enhancement to balance the back-
light and the projector. The average local brightness is ap-
proximated with a Gaussian filter, which is then subtracted
from the original image in order to maximize the contrast.
A scaling of min-max to 0-255 increases the contrast as
well. The result with the detected points can be seen in
Figure 8.

We calibrate the projector using a camera model. This
is reasonable since it basically performs the task of a cam-
era “backwards” – while a camera captures an image, a
projector displays something. Due to this, the calibration
pattern in projector space always stays the same, it only
changes on the board. Since we are using an algorithm for

Figure 8: Projector dot pattern detected in the colour cam-
era.

cameras, the detected points from the dot pattern need to
be transformed from camera space to the calibration board
space, more specifically to the plane they are being pro-
jected onto. This plane is in the same space as the chess-
board pattern, therefore the transformational components
of the chessboard can be used. This calibration procedure
is based on the work by Cassinelli and Bergström [3]. Be-
fore starting the calibration process for the projector, the
camera should have been already calibrated, as described
in Section 3.2.

The projector points in board space (in the following
referred to as projector board points) can be used as the
input to a standard camera calibration procedure [12]. This
will find the intrinsic camera parameters for the projector.

To get the pose (the extrinsic parameters) of the projec-
tor a stereo calibration procedure [2] can easily be applied
to the projector board points and the points of the projector
pattern as seen by the camera (simply the detected points
in the captured images). This results in the rotation ma-
trix and the translation vector between the two coordinate
systems.

To determine the projector board points, the actual pro-
jected points in each image must be “back-projected” into
board space.

A 2D point on the camera plane can be transformed into
a 3D ray in board space in the form of

p = f+ k ·d (1)

where p is a point on that ray, f its starting point, d
the direction and k > 0. In our case, f is the camera fo-
cal point in board-coordinates. The direction d is given
through each projected point’s position. We are only look-
ing for a specific point – the intersection of the ray and
the planar surface of the calibration board. Therefore, the
z-coordinate of the point p is always 0 in our board coor-
dinate system.

In detail, the projection of a camera point onto the board
can be calculated as

fb = Rb
−1 ·−tb

dp = Rb
−1 ·K−1 ·

up
vp
1


xp

yp
0

 = − fbz

dpz
·dp + fb

(2)

where Rb is the rotation matrix and tb the translation
vector from the current board b to the camera coordinate
system, K stands for the camera matrix of the camera, up
and vp are the coordinates of a single projected point on
board b as seen from the camera.
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4 Point cloud matching

In order to find the pose of our relief, which changes ev-
ery time the relief is moved below our setup, we are using
only the input of the depth camera. A known 3D object’s
pose with respect to the depth camera can be found with a
point cloud matching algorithm. By using the calibration
information we obtained before, see Section 3, that pose
can then be determined in every used device’s space.

The point cloud matching algorithm used in this imple-
mentation is based on the method by Drost et al. [4, 5].
It estimates the position of a known object using 3D fea-
tures of point pairs. The first and the second point of the
pair are denoted as p1 and p2 and their respective normal
vectors n1 and n2. The normal vectors are calculated from
the depth image by fitting a plane to all points in a radius
r so that the summed squared distance to all points is min-
imized.

A Point Pair Feature (PPF) consists of the following val-
ues:

6 (n1,
−−→p1p2) The angle between the normal of p1 and the

vector from p1 to p2

6 (n2,
−−→p1p2) The angle between the normal of p2 and the

vector from p1 to p2

6 (n1,n2) The angle between the normal of p1 and the
normal of p2

|−−→p1p2| The length of the vector from p1 to p2

First, a training of the known object (the object that
should be detected) must be performed. For every pair
of points closer together than a specified maximum radius
rmax the PPF is calculated. By translating the pair so that
p1 will lie in the origin and rotating n1 onto the x-axis, the
angle αt can be defined as the angle in the yz-plane. These
values are stored in a hash table, with the hash value com-
puted from the four PPF values. If more than 5 entries are
added to the same hash, we deem these as too undescrip-
tive and ignore them from further computations.

During the matching phase (which has to be initiated ev-
ery time the relief is moved) we iterate over the 3D scene
from the depth camera. For every pair of points in the same
radius rmax we again calculate the PPFs, as well as the an-
gle αm the same way as during the training. We compute
the hash value of each current PPF and use this as the key
to get all similar PPFs from the hash table which contains
the trained values. Then we compare the current αm to
each of the trained pairs’ αt , as in αdiff = αm−αt . The
angle αdiff describes the rotation around the x-axis from
the scene point pair to the trained pair (see Figure 9).

We are basically using this to break down the relative
pose between two PPFs consisting of 6 dimensions into a

Figure 9: Angle αdiff . Taken and adapted from [5]

single one, in order to simplify the matching process. So,
during the comparison both p1 points are being moved into
the origin, therefore the three translation dimensions are
fixed. Moreover, by rotating both n1 normal vectors onto
the x-axis and only considering the angle in the yz-plane,
this is the only rotational dimension left. Therefore, αdiff
describes the rotational component of the object’s pose in
a single value.

A Hough-like voting scheme is performed over the first
point of every feature pair in the hash table and αdiff . For
every point the pose with the largest number of votes is
taken into account – these are the optimal local coordi-
nates. In the end, a clustering algorithm is applied to all
poses in order to find the final pose with the most point
pair matches, assuming that this is the right solution.

Once the position of the object is found, the outlines of
it will be displayed by our application on the screen on
top of the infrared view. This is done by projecting pre-
defined labels, for example as seen in Figure 10, which
are loaded from a PNG-file, and rendered into the camera
space. Additionally, by transforming the labels into the
projector space, the projector can highlight the labels on
the object below.

The training step is performed on the 3D object before-
hand. Since the created data can get very large, about 500
MB for an approximately 40× 40 cm sized relief, it is
more efficient to start the training at start-up than to store
and load the trained data explicitly. Then during the run-
time of our application, the second phase of the algorithm
is executed to determine the object’s current pose. The
depth values provided by the camera are averaged over
the last five frames to avoid noise or irregularities and get
undistorted with use of its intrinsic parameters. A bigger
number of frames to average did not crucially improve the
quality, but reduces the likeliness of future real-time us-
age, so five frames seemed a good trade-off. By using
a relatively large radius r = 4px for the plane fitting, we
generate mostly robust normals, which proved sufficient
for our uses.
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Figure 10: Labels of the painting “Der Kuss”.

5 Results

Our application runs on a Sprout Pro by HP4 with an Intel
Core i7-6700. The colour and depth camera are combined
in the Intel RealSense 3D Camera F200 and both have
been used at a resolution of 640×480 pixels for all results.
Moreover, it has a built-in DLP Projector with 1280×800
pixels.

The capturing of the calibration images including pat-
tern detection, as described in Section 3, can be done in
real time. The automatic calibration process takes about
10 - 15 seconds for ca. 20 images. The results from the
calibration are reported by our system in terms of the RMS
re-projection error. While the calibration of the colour
camera returns very low errors, usually below 0.5 pix-
els, higher values are reached with the depth camera, in
most cases about 1.0 pixels. This deviation still proved
sufficient for our uses. Due to the difficulty of capturing
the projected calibration pattern in many varying positions
the re-projection error of the projector is worse, approxi-
mately around 1.5 pixels. The re-projection errors for the
stereo calibrations lie between 1.0 and 1.5 pixels. All in
all, this seems to be a sufficiently accurate solution for our
use case.

While the training phase can take up to 10 seconds for a
40×40 cm sized relief, the matching usually can be done
in less than 5 seconds. This seemed sufficient since it only
has to be carried out when the relief is moved. The point
cloud matching algorithm leads to an accurate solution at
least once in three matching tries. Since the projector will
visually mark the object’s pose, errors can easily be de-
tected by the human eye and the matching can be restarted.
A correctly detected pose, with projected labels, can be
seen in Figure 11. Due to the large, mostly planar regions
of the model, most point pair matches are detected in that

4http://www8.hp.com/h20195/v2/getpdf.aspx/
c04920623.pdf?ver=2

Figure 11: Correctly detected solution and labels projected
onto the object.

Figure 12: Minor errors during the point cloud matching
phase.

area – even with the removal of redundant features in the
hash table – which can easily outnumber actual significant
matches, therefore leading to smaller inaccuracies as in
Figure 12.

6 Conclusions and Future Work

In this paper, a method to calibrate a setup consisting of
four components (colour camera, depth camera, projector,
3D object) was introduced. While the depth camera can
determine the pose of a given object and is used for hand
gesture detection, the projector is set up to project onto the
object to illustrate different regions of the object. The cal-
ibration procedure is able to simultaneously calibrate all
three imaging devices, with the use of different colour pat-
terns, one printed and one projected. While the colour and
the depth camera get calibrated with a printed pattern, a
projected pattern as seen by the colour camera gets trans-
formed into the space of the printed pattern’s board and
can then be used for the calibration of the projector. The
point cloud matching algorithm relies on simple features
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between a pair of points and determines the best position
through choosing the locally most likely result and clusters
the options at last.

While the calibration for the colour camera and the pro-
jector leads to very high accuracy, the process for the depth
camera still needs some improvement, due to noise and
other irregularities. An option to improve the quality of
the depth camera measurements would be to introduce a
deviation model to calibrate the depth values of the cam-
era.

To improve all different calibration steps, images with
high re-projection error could automatically be detected
and ignored in the following computations. This would
lead to an improvement of the total error, even though bad
images can currently be sorted out by hand.

Moreover, the point cloud matching algorithm relies on
plain simple features that can easily lead to incorrect so-
lutions, especially when the quality of the provided depth
image is low, which is the case in this application. While
changing to a different matching algorithm that is more
immune against errors could solve the problem, another
option would be to take information from the colour cam-
era into account. Most objects used in this project are sin-
gle coloured and the background usually is the plate from
a desk and therefore has a single colour as well. With the
use of colour segmentation, the approximate 2D position
on the desk could be estimated and the algorithm can be
improved, with the new information obtained.
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