
Real-Time Rendering of Procedurally Generated Planets

Florian Michelic∗

Supervised by: Michael Kenzel†

Institute of Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

We present a simple and efficient solution for seam-
less and distortion-free representation of planetary terrain,
ocean waves, and volumetric clouds solely based on pre-
computation and on-the-fly calculations, running in real
time. Our approach to terrain and ocean mesh generation
relies on projecting a persistent grid onto the surface of
the planet that takes level-of-detail and frustum-culling
into account. We modify a planar wave function to ac-
count for the curved surface of the planet, creating seam-
less, evenly spaced waves across the planet, while remain-
ing fully controllable and adjustable in order to reflect the
various dynamics of ocean waves. We further show how
we render volumetric clouds along with precomputed at-
mospheric scattering to properly integrate the clouds into
the atmosphere. Our method allows for reasonable cloud-
atmosphere interaction and accounts for all viewpoints and
viewing directions with continuous transition from ground
to space.

Keywords: Real Time, Planet, Terrain, Ocean, Atmo-
sphere, Clouds

1 Introduction

Rendering large landscapes has always been a difficult
task for computer graphics. It requires the representation
of a variety of natural phenomena such as terrain, water
and the sky. The size of the scene and the freedom of
movement of the camera plays a major role in the imple-
mentation of those effects. Terrain data can no longer be
stored completely in memory and rendering the entire ge-
ometry in each frame quickly becomes inefficient as the
scene grows. Algorithms such as geomipmapping [4] and
geometry clipmaps [12] rely on level-of-detail (LOD) and
view-frustum culling to render terrain as detailed as pos-
sible in real time. However, most of such algorithms are
based on a flat surface as input and can not simply be ap-
plied to the curved surface of a planet. The surface of a
planet is three-dimensional, which makes placing geometry
and sampling textures more difficult. Since the camera

∗florian.michelic@student.tugraz.at
†michael.kenzel@icg.tugraz.at

should be able to move from ground to space, it is also
necessary that effects such as atmospheric scattering and
clouds are designed for all viewing directions and camera
positions. Our contributions are:

• We propose a new projection method for the persis-
tent grid mapping algorighm [11] that eliminates the
problem of morphing vertices.

• We extend the Gerstner wave function [7] to a spheri-
cal domain.

• We introduce a new method for unified cloud-
atmosphere rendering that allows for continous transi-
tion from ground to space.

2 Related Work

Planetary Terrain The non-planar surface of the planet
makes rendering terrain more difficult in addition to LOD
and frustum-culling requirements. A common approach is
to adapt existing algorithms to the curved surface of the
planet.

Clasen et al. [3] apply the GPU-based geometry clipmaps
of Asirvatham et.al. [1] to planetary terrain. They use
nested concentric rings instead of regular grids to achieve
a better mapping to the sphere. Their solution does not
account for frustum-culling. Dimitrijević et al. [6] intro-
duce Ellipsoidal Clipmaps (ECM), another way to apply the
principle of geometry clipmaps to planetary terrain. They
divide the surface of the planet into three seamlessly stiched
partitions, one equatorial and two polar. The grid is gener-
ated on-the-fly. Their approach enables efficient caching
and fast data streaming with reduced data preprocessing.

Mahsman J. [9] extends the persistent grid mapping algo-
rithm (PGM) [11] to create planetary terrain. The algorithm
combines ray casting with rasterization, running completely
on the GPU. A persistent grid is projected via ray-sphere
intersections from screen space to world space onto the
surface of a sphere, i.e., the planet’s ground level. The
adapted PGM algorithm allows for rendering of large ter-
rain datasets providing continuous LOD. A major drawback
of using PGM for terrain rendering is visible morphing of
vertices as the projected grid moves with the camera, a

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

problem which we solve by using a different projection
method.

Planetary Wave Modeling S. J. Li et al. [10] use PGM
to create an input mesh for ocean wave modeling. Here,
PGM is a good choice as the moving ocean surface hides
the morphing vertices. They use the longitude and latitude
of the vertices, denoted as α and β , to sample a two dimen-
sional wave noise function. They propose to scale α with
cos(β) in order to account for the distortion towards the
poles. However, after re-implementing this mapping, we
found that it suffers from other distortions as well as seam
artifacts as illustrated in Figure 1. De-lie et al. [5] generate
the ocean mesh with the geomipmapping algorithm [4] and
use the method in [15] for wave modeling. They divide
the global ocean surface into blocks for which multi-frame
height fields are precomputed and stored on disk, trading
space for time. A quad tree is used for scene culling and
selecting tiles with appropriate resolution to be stored into
buffers and rendered, only specific areas are generated in
real time. Our approach, on the other hand, does not require
any special considerations to go towards enabling LOD and
still offers quite some flexibility in terms of wave modeling,
all without significant preprocessing and using only very
little memory.

Clouds and Atmospheric Scattering Schneider et
al. [14] model clouds with precomputed, tiling 3D tex-
tures and render them through ray marching. Two textures
define the shape of the clouds while a third 2D texture is
used to add distortion. Lighting accounts for Beer’s law,
the Henyey-Greenstein phase function [8] and a powder
effect that yields dark edges. Several optimizations are
introduced to speed up rendering. The major performance
gain relies on using a quarter resolution buffer to update
the final image over several frames.

Bruneton et al. [2] formulate a rendering equation for
atmospheric scattering that allows for precomputation. The
transmittance and scattered light is precomputed into tex-
tures for all view and sun directions. The precomputed
data allows for an efficient computation of the transmit-
tance and in-scattered light between two points within the
atmosphere at runtime. Their approach reproduces sev-
eral effects such as daylight and twilight sky color, aerial
perspective and also allows shadows to be taken into con-
sideration to produce light shafts. Our contribution is to
combine both approaches to allow for unified atmosphere
and clouds rendering with real-time performance.

3 Grid Projection

We create terrain in two steps. First, we create a mesh on
the planet’s ground level, i.e., the surface of a sphere. Then
we offset the vertices from the planet’s ground level to cre-
ate planetary terrain. We evaluate 3D Simplex noise [13] to
get the terrain height for a certain position on the planet’s

Figure 1: left: Using (α,β) results in compressed waves,
where −π ≤ α ≤ π is the longitude and −π

2 ≤ β ≤ π

2 the
latitude. right: Using (α · cos(β),β) removes compressed
waves but also introduces distortion and seams.

ground level. This is benefitial as we do not have to deal
with the curved surface of the planet. We can simply layer
different frequencies of the noise function to create proce-
dural terrain. The mesh generation on the planet’s ground
level is more difficult as it must provide LOD and frustum-
culling to achieve real-time performance. As with PGM [9],
we use a persistent grid and project it to the planet’s ground
level, but we assume the grid to be in world space instead
of screen space. Figure 2 illustrates the initial world-space
grid. The center of the planet is located at the origin of the
world-space coordinate system. We place the grid at the
planet’s center and apply a global offset zs along the z-axis.
Then we project the vertices to the planet’s ground level
with

v =

vx
vy
vz

=
g
‖g‖
· r, (1)

where v is the resulting vertex position, r is the radius of the
planet, and g=

[
gx gy gz

]T the original grid vertex coor-
dinate. The offset zs allows us to control the projection but
causes some issues as illustrated in Figure 3. For zs > 0, the
projected mesh provides more detail at the horizon which
is not desired. Moving the grid closer to the planet center
increases the error. For zs = 0, the grid does no longer
cover any area and for zs < 0 the back faces of the mesh
are projected to the planet’s ground level. As a solution, we
choose to displace the grid along the z-axis to approximate
a hemisphere before applying zs. This certainly solves all
projection issues as illustrated in Figure 4.

x

y
(1,1)

(-1,-1)

(-1,1)

(1,-1)

Figure 2: Initial world-space grid layout illustrated with
5×5 vertices.

We use
gz = (1−gn

x)(1−gn
y), (2)

with n = 4 to displace the initial grid to an approximated
hemisphere. However, n = 2 also works but we found
that n = 4 results in a better projection for zs < 0. The
global offset zs defines the area that the grid covers on the

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) (b) (c) (d)

Figure 3: Grid projection approach. (a, b) initial grid (red)
projected to the planet’s ground level (green) with positive
offset zs > 0. (c) no offset (d) negative offset.

(a) (b) (c) (d)

Figure 4: Grid projection approach with approximated
hemisphere due to Equation 2. The projected grid cov-
ers less space near the horizon and for zs < 0 the grid is
correctly projected beyond the hemisphere of the planet.

planet’s ground level. For example, if the camera is on
the ground, zs should be positive because there is only a
fraction of the planet visible to the camera. As the camera
moves into space, zs should decrease because more of the
planet becomes visible. The offset calculation also relates
to further displacement of the projected mesh. We need
to take this displacement into account when we calculate
zs as high mountains may rise beyond the horizon. We
assume the worst case where the highest possible mountain
is currently beyond the horizon and just the peak of it
is visible. Figure 5 illustrates the calculation of zs. The
distances h and s are given as

h =
√

d2− r2 s =
√

R2− r2,

where d is the distance from the planet center to the camera
position and R is the distance from the planet center to the
highest possible mountain. From sinα = r

d and sinϕ =
(h+s)·r

Rd we get the distance rs with

rs =
y

sinϕ
=

1
(h+s)·r

Rd

=
Rd

r · (h+ s)
.

From cosϕ = R2+d2−(h+s)2

2Rd and rs we compute the offset zs

zs = cosϕ · rs =
R2 +d2− (h+ s)2

2r · (h+ s)
. (3)

The calculation of zs only accounts for the camera dis-
tance d and assumes the camera to be on the positive z-axis.
Therefore, we must rotate the grid to face the camera. For
a given camera position p and an arbitrary linearly indepen-
dent vector b, we use a rotation matrix R with

w =
p
‖p‖

, v =
w×b
‖w×b‖

, u = w×v

camera
d

R r

ϕ

h

s

y

zs

rs

α

Figure 5: A grid (green) is displaced by zs to capture every
possible visible terrain beyond the horizon. The radius r is
the planet radius at ground level and R is the distance from
the planet center to the highest mountain.

camera

Figure 6: Grid projection. (red) initial grid displaced to
approximated hemisphere. (green) grid shiftet by zs. (blue)
grid rotated to face the camera. (brown) vertices displaced
from the planet’s ground level to model terrain.

R =

ux vx wx
uy vy wy
uz vz wz

 . (4)

The vector b needs to be constant and not related to the cam-
era orientation. This allows us to prevent visible morphing
of vertices for camera rotations compared to PGM. How-
ever, b must be changed if it is not linearly independent to
p, although we never had problems using b =

[
0 0 1

]T .
Figure 6 illustrates the complete projection approach.

As the grid scales with d and always faces p, morphing
still takes place when the camera translates. To eliminate
the effect for translations, we keep the camera position
for the projection constant until the distance to the actual
camera position exceeds a certain threshold. This allows
the camera to move freely within a restricted space with-
out any visible morphing. Therefore, we reduce the effect
of morphing vertices completly to popping, which hap-
pens everytime we update the camera position used for the
projection algorithm. We can also prevent this by using op-
portunities to update it earlier when the change in geometry
is less visible, e.g., when looking at the sky.

There is no fustum-culling so far as the projection only
adapts to the camera position. However, we apply frustum-
culling during tessellation on the GPU by discarding all tri-
angles for which all vertices fall outside a slightly widened
camera frustum.

4 Ocean Wave Modeling

Using the projection method described above, we generate
a mesh with an appropriate tessellation for ocean wave

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

simulation. Our approach is based upon the Gerstner wave
function [7] that creates directional and circular waves
on a planar surface. The vertices are displaced along the
z-axis by the sum of sine waves and also along the x,y-
plane to create sharp waves with the nice property that
vertices are concentrated at the crests. Furthermore, it
allows easy control over wave properties such as amplitude
and direction and suits well for real-time applications. We
define a mapping to apply the principle of Gerstner waves
to the curved surface of the planet which we further refer to
as spherical Gerstner waves. The Gerstner wave function
is given as

Pg =

px +∑
N
i=1 di,xQiAi cos(ωidip+ϕit)

py +∑
N
i=1 di,yQiAi cos(ωidip+ϕit)

∑
N
i=1 Ai sin(ωidip+ϕit) ,

 (5)

where N is the number of waves, p is the input vertex, Ai
is the amplitude of wave i, di is the direction vector along
which the wave travels, ωi is the frequency, ϕi controls the
wave speed and Qi is a steepness parameter that controls the
sharpness of the crests. For circular waves, di is calculated
with

di =
p− ci

‖p− ci‖
, (6)

where ci defines the wave centers. In contrast to directional
waves, circular waves map very good to planets as for a
wave with ci =

[
0 0

]T , the dot product di ·p in Equation 5
is ‖p‖ and di =

p
‖p‖ . We define spherical Gerstner waves

with a unit vector oi that points to the origin of the waves on
the planet. Figure 7 illustrates the parameters. The vector
oi points to the origin of the waves. The distance li is the
distance from the origin to the vertex. The direction vector
di at the vertex lies on the tangent plane and points towards
−oi. The vector v is the normalized vertex position. Waves
start at the origin and meet up at the opposite side of the
planet, i.e., where −oi points to. We calculate di and li at
vertex position p with

di = v× ((v−oi)×v) li = arccos(v ·oi) · r, (7)

where v = p
‖p‖ and r is the distance from the planet center

to the desired sea level. The distance li is technically only
another representation of the latitude and since we do not
include the longitude, our method is free of distortions and
seams compared to [10]. We split up the horizontal and
vertical displacement in Equation 5 and replace di ·p with
li yielding the spherical Gerstner wave function Ps as

Ps = vr+v
N

∑
i=1

(Ai sin(ωili +ϕit))

+
N

∑
i=1

(QiAi cos(ωili +ϕit) ·di) .

(8)

We calculate the tangent space vectors in a similar way.
With Gerstner waves, the normal vector is calculated with

ng =

−∑
N
i=1 di,xAiωi cos(ωidip+ϕit)

−∑
N
i=1 di,yAiωi cos(ωidip+ϕit)

1−∑
N
i=1 QiAiωi sin(ωidip+ϕit)

 . (9)

As with Equation 8, we replace di ·p with li and use di and
v to map ng to the tangent plane of p such that

ns = v−v
N

∑
i=1

QiAiωi sin(ωili +ϕit)

−
N

∑
i=1

diAiωi cos(ωili +ϕit) .

(10)

The tangent vector is constant for a single direction from
the wave origin as ns always lies on the plane defined by di
and v. Therefore, we calculate the tangent vector ts and the
associated bitangent bs with

ts =
N

∑
i=1

(
di×v
‖di×v‖

)
bs = ns× ts.

v

di

oi

li

Figure 7: Spherical Gerstner wave parameters.

oi

(a)

oi

(b)

oi

(c)

oi

(d)

Figure 8: Spherical Gerstner waves. (a) Qi = 0 yields the
usual sine wave. (b) Qi = 1 gives sharp crests but causes
loops at oi and −oi. (c) Scaling Qi to 0 removes the loops.
(d) Further increasing of Qi causes loops at the crests.

Results for Equation 8 are illustrated in Figure 8. The
displacement along di on the tangent plane of p causes a
small offset from the sea level which allows Qi to exceed
1 without causing loops as seen in Figure 8b. While this
is true for Equation 8, it does not apply to the normal
calculation in Equation 10. Therefore, Qi should never
exceed 1 as in [7]. Another problem arises at oi and −oi.
The vertices are displaced beyond the orgin and form loops
as illustrated in Figure 8b. A simple solution is to fade out
the displacement along di towards oi and−oi by scaling Qi
to 0. This is applied using the smoothstep function as

Q′i = Qi · smoothstep(1−|v ·oi|,e0,e1), (11)

where e0 and e1 should be choosen such that e1 > e0 > 0
to fade out Qi early enough with proper transition across
several wave fronts.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

density = 0

density < 0
density >= 0

Figure 9: Ray marching through the cloud texture peform-
ing either a small or large step. The choosen step size only
depends on the sampled density represented as black dots.

5 Clouds

Modeling We model clouds by precomputing Sim-
plex [13] and Worley [16] noise into a single 2563, 16-bit
float texture representing cloud density. Values ≥ 0 model
cloud material whereas values < 0 indicate that there are
no clouds. As in [14], we perform either small or large
ray-marching steps but we use a different selection criteria.
Rather than taking a step back or switching back to large
steps, we precompute a border of zero density around each
cloud that matches our large step size. This way, the sam-
pled density immediately tells us to perform either a small
(density ≥ 0) or a large (density < 0) step as illustrated
in Figure 9. This saves us a few instructions and allows
to stop or continue ray marching efficiently which we do
frequently with our unified cloud-atmosphere rendering
approach.

We define a cloud layer with a top and bottom radius and
tile the cloud texture in world space across the planet as
illustrated in Figure 10. Ray marching is only performed
within the cloud layer. We use a height signal similar as
in [14] to fade out the density to zero near the top and
bottom layer. The texture coordinate c for a given world-
space position p is given as

c = fract
(

p
1
w

)
, (12)

where w is the tile width in world space. The height signal
h is computed with

h = 1−
(

2 · clamp(‖p‖− lb,0, lt − lb)
lt − lb

−1
)2

, (13)

where lt is the distance from the planet center to the top
layer and lb the distance to the bottom layer. The density
for a given world-space position p is then given as

density(p) =

{
−1 if tex(c)< 0
h · tex(c) else,

(14)

where tex(c) is the linear interpolated voxel at texture coor-
dinates c of our precomputed cloud texture.

Cloud Lighting Let TC be the transmittance of the clouds
between two points p0 and p1 within the atmosphere. Light
that arrives at p1 and travels towards p0 is partially out-
scattered due to clouds. The transmittance defines how
much light arriving at p1 reaches p0. We compute TC by

top layer bottom layer

Planet

r

w

w

Figure 10: Planet with cloud layer. The precomputed tex-
ture is tiled across the planet in world space. The cloud
layer is defined with a top and bottom radius, i.e., the top
and bottom cloud layer.

ray marching from p0 to p1. For each density sample, we
accumulate TC with

TC,0 = 1, TC,n = TC,n−1 · e−E·∆·d , (15)

where E is the extinction factor, ∆ is the step size in world
space and d is the density sample. Along to the transmit-
tance, we compute the in-scattered light IC of the clouds
between the two sample points. That is, the amount of
light that is scattered towards p0 between p0 and p1. We
accumulate the in-scattered light with

IC,0 = 0, IC,n = IC,n−1 +S ·HG ·∆ ·d · Isun ·TC,n, (16)

where S is the scattering factor, HG the Henyey-Greenstein
phase function [8] and Isun the incident light. We perform
six density samples along a ray towards the sun and com-
pute the transmittance Tsun according to Equation 15. The
incident light Isun is then given as Isun = Tsun ·Lsun, where
Lsun is a constant sun radiance.

Atmospheric Scattering We apply precomputed atmo-
spheric scattering as proposed by Bruneton et. al. [2]. This
allows us to get the transmittance TA and the in-scattered
light IA of the atmosphere. We can either fetch TA and IA
between a point and the top atmosphere boundary when
looking at the sky, or between two points within the atmo-
sphere. When looking at the sky, we just display IA. When
looking at the ground, we display IA +TA ·RG, where RG
is the ground radiance, i.e., the result of terrain or ocean
shading.

For view rays that intersect with clouds, there is also an
in-scattered light IC along the view ray towards the camera.
However, if we evaluate Equations 15 and 16 from the
camera along the view ray to its end point (e.g. terrain)
and sample the atmosphere for the same distance, we have
no basis for combining IC and IA as TC and TA provide no
information about the position of the clouds. Of course,
since clouds and atmosphere influence each other, it makes
a difference where the clouds are located along the view
ray. The precomputation of atmospheric scattering whereas
assumes a clear sky and does not accout for any clouds.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

We integrate the clouds into the calculation of the at-
mosphere at a later stage by making several atmosphere
samples along the view ray. We can divide the atmosphere
into an arbitrary sized number of slices but need to accumu-
late the total TA and IA along the whole view ray ourselves.
In other words, we perform ray marching on the atmo-
sphere itself, by simply sampling the in-scattered light and
the transmittance of the precomputed textures for each step.
This can be written as

TA,0 = 1, TA,n = TA,n ·TA,n−1 (17)
IA,0 = 0, IA,n = IA,n−1 + IA,n ·TA,n−1. (18)

Without clouds, we would get the same result as if we were
sampling the atmosphere once. However, with multiple
samples, we can evaluate Equations 15 and 16 separately
for each atmosphere step and let the atmosphere and cloud
transmittances influence each other’s in-scattered light. Fig-
ure 11 illustrates multiple atmosphere samples along the
view ray. For each atmosphere sample, we compute TC
and IC and accumulate them together with TA and IA into
a combined transmittance T and a combined in-scattered
light I. The combined transmittance T is computed with

T0 = 1, Tn = TA,n ·TC,n, (19)

where the index n of TC,n indexes the result of Equation 15
between two subsequent atmosphere sample points. For
I we assume that TC affects IA but IC is only indirectly
affected by TA via Tn−1 which can be written as

I0 = 0, In = (IA,n ·TC,n + IC,n) ·Tn−1. (20)

Rendering To render the atmosphere, we evaluate Equa-
tion 20 along the view ray. We omit TC and IC in Equa-
tion 20 for atmosphere samples outside the cloud layer.
Equations 15 and 16 yield TC = 1 and IC = 0 due to d = 0.
We start ray marching at the camera position and end either
at the sky or at the ground. View rays may intersect the
cloud layer once, twice or only the top or bottom cloud
layer, i.e., when the camera is within the cloud layer. We
only consider rays that intersect the cloud layer and apply
the atmosphere otherwise as without clouds. Figure 12
illustrates ray marching through the cloud layer when the
camera is in space. We sample the atmosphere once from
the top atmosphere to the top cloud layer. We continue with
small, increasing steps towards the bottom cloud layer or
the top cloud layer. From there, we either sample the sky
radiance, the ground radiance or hit the bottom cloud layer
again.

For atmosphere samples within the cloud layer we need
to compute TC and IC between two sample positions. We
start a ray marcher that evaluates Equations 15 and 16
between the two atmosphere sample points. The resulting
transmittance TC and in-scattered light IC of the clouds for
this segment is then accumulated according to Equation 20.

top
atmosphere

bottom
atmosphere

top cloud
layer

bottom
cloud layer

Figure 11: Unified atmosphere-clouds ray marching, illus-
tration of 5 subsequent atmosphere slices along the view ray
(blue). For each slice within the cloud layer, we ray-march
the clouds separately in smaller steps (orange).

planet

cloud layer

top atmosphere

bottom atmosphere

Figure 12: Atmosphere and clouds ray marching. All rays
through the cloud layer with camera position in space, i.e.,
outside the top atmosphere boundary. We omit rays that
only touch the top cloud layer.

6 Results

We implemented our solution with OpenGL on a NVIDIA
GeForce GTX1060, all images are rendered in full-HD.
Figure 13 illustrates our planet rendering approach. We pre-
compute Simplex noise into a 10242 texture to define the
shape of the continents using a longitute-latitude mapping.
We use this texture along with on-the-fly evaluation of Sim-
plex noise to displace the projected grid from the planet’s
ground level. We compute per-vertex normals by sampling
the height of the terrain at two neighboring points. We
then shade the terrain with the Phong illumination model
and use a three-planar projected normal map to get detail
normals. Performance results for terrain rendering can be
found in Table 1 with reference images in Figure 14. We
use 100×100 vertices and 5 noise layers for all other ren-
ders as this seems enough to model terrain and popping
is barely visible due to tessellation. The change in terrain
geometry (popping) is illustrated in Figure 15.

For ocean rendering we project a 80×80 grid, apply tes-
sellation and then displace the vertices using our spherical
Gerstner wave function. Shading accounts for the underwa-
ter terrain and either atmosphere reflections or screen-space
reflections of the terrain. The performance for increasing
numbers of waves can be found in Table 2. Figure 16 illus-
trates the result for 20 waves and also shows the circular
and directional appearance of a single wave.

As a final step, we render the clouds along with the at-
mosphere as a post-processing effect. The two textures
containing the world-space positions of the terrain and the
ocean determine whether the ray ends up at the ground or
at the sky and the color textures provide us with the ground

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

terrain
shader

ocean
shader

cloud and
atmosphere

shader

normal map

continents
texture

camera

grid

parameters

shaded
terrain

shaded
ocean

world-space
positions

world-space
positions

Figure 13: Planet rendering.

radiance Rg. For each Rg we compute a transmittance to-
wards the sun with one density sample in the middle of
the cloud layer and use it to darken Rg for cloud shadows.
Figure 17 illustrates cloud-atmosphere interaction for vary-
ing atmosphere parameters and Figure 18 shows the planet
viewed from space.

noise layers 50×50 100×100 200×200

continents 0.8ms 0.5ms 0.9ms
1 1.0ms 0.7ms 1.3ms
5 1.3ms 1.3ms 1.9ms

10 1.7ms 2.6ms 2.6ms

Table 1: Terrain performance for increasing noise layers
and grid resolutions. See Figure 14 for reference images.

20 50 100 1000

0.6ms 0.7ms 0.9ms 4.0ms

Table 2: Spherical gestner waves performance for 20, 50,
100 and 1000 waves for view in Figure 16.

Figure 14: Reference images for Table 1 with initial grid
resolution 100× 100 vertices. From top-left to bottom-
right, continents texture only, 1, 5 and 10 noise layers.

7 Discussion

In contrast to PGM for planetary terrain [9], our approach
to mesh generation does not suffer from visible morphing
of vertices. While this is our main improvement, it should
also be mentioned that our projection method requires only

Figure 15: Overlay of previous (red) and current (green)
terrain mesh for raw projected grid.

Figure 16: The view (top) used for ocean performance
measurements in Table 2. Circular waves at the origin
(bottom-left) and directional waves far away from the origin
(bottom-right).

a few lines of shader code. The offset calculation already
accounts for terrain beyond the horzion which is important
for small planets with relatively high terrain. PGM whereas
requires a special sampling camera to capture possible visi-
ble terrain beyond the horizon. Our mapping of Gerstner
waves to the curved surface of the planet does not suffer
from distortion or seams as the mapping proposed in [10]
and requires only little memory compared to [5]. Each
wave consumes 28 Bytes of GPU memory which is in total
560 Bytes for 20 waves. This is significantly less than the
precomputed multi-frame height fields for the global scope
in [5] and there is also no need to store ocean data on disk
and upload them to the GPU at runtime.

In the future we may investigate different tessellation
strategies along with potential on-the-fly switching of the
persistent grid. We may further improve procedural model-
ing and shading to account for various wheater and atmo-
spheric conditions for a more reasonable representation of
real world planets. There are also potential ways to speed
up cloud ray marching. This could involve LOD textur-

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 17: Interaction of cloud and atmosphere for varying
atmosphere parameters. Rendered with 70 fps including
2.96ms for terrain, 0.26ms for ocean and 10.98ms for
atmosphere and clouds.

Figure 18: Planet viewed from space.

ing using a downsampled version of our cloud texture or
sharing incident light samples across ray-marching steps.

8 Conclusion

We presented a new method for terrain, ocean and unified
cloud-atmosphere rendering that allows for real-time planet
rendering providing continuous transition from ground to
space.

References

[1] Arul Asirvatham and Hugues Hoppe. Chapter 2 ter-
rain rendering using gpu-based geometry clipmaps.
In Matt Pharr and Randima Fernando, editors,
GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Com-
putation (Gpu Gems), pages 27–46. Addison-Wesley
Professional, 2005.

[2] Eric Bruneton and Fabrice Neyret. Precomputed at-
mospheric scattering. In Proceedings of the Nine-

teenth Eurographics Conference on Rendering, pages
1079–1086, 2008.

[3] Malte Clasen and Hans-Christian Hege. Terrain ren-
dering using spherical clipmaps. In Proceedings of the
Eighth Joint Eurographics / IEEE VGTC Conference
on Visualization, pages 91–98, 2006.

[4] Willem H. de Boer. Fast terrain rendering using geo-
metrical mipmapping, 2000.

[5] M. De-lie, G. Peng-fei, and W. Mi. On realization of
visualization system for global ocean simulation. In
2010 International Conference on Audio, Language
and Image Processing, pages 1446–1450, 2010.

[6] Aleksandar M. Dimitrijević and Dejan D. Rančić. El-
lipsoidal clipmaps – a planet-sized terrain rendering
algorithm. Computers & Graphics, pages 43–61,
2015.

[7] Mark Finch. Chapter 1. effective water simulation
from physical models. In Randima Fernando, edi-
tor, GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics, page 5–29. Pearson
Higher Education, 2004.

[8] L. C. Henyey and J. L. Greenstein. Diffuse radiation
in the galaxy. Astrophysical Journal, 93:70–83, 1941.

[9] Mahsman J. Projective grid mapping for planetary
terrain. Master’s thesis, 2010.

[10] S. J. Li and X. S. Zhan. Modeling and rendering of
ocean battlefield scenes. In 2011 Workshop on Digital
Media and Digital Content Management, pages 40–
44, 2011.

[11] Yotam Livny, Neta Sokolovsky, Tal Grinshpoun, and
Jihad El-Sana. A gpu persistent grid mapping for
terrain rendering. The Visual Computer, pages 139–
153, 2008.

[12] Frank Losasso and Hugues Hoppe. Geometry
clipmaps: Terrain rendering using nested regular
grids. In ACM SIGGRAPH 2004 Papers, pages 769–
776, 2004.

[13] Ken Perlin. Improving noise. In Proceedings of the
29th Annual Conference on Computer Graphics and
Interactive Techniques, pages 681–682, 2002.

[14] Andrew Schneider. The real-time volumetric cloud-
scapes of horizon: Zero dawn. SIGGRAPH2015
Advances in Real-Time Rendering in Games course,
2015.

[15] Jerry Tessendorf. Simulating ocean water. 1999.

[16] Steven Worley. A cellular texture basis function. In
Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, pages
291–294, 1996.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

