
Animated Trees with Interlocking Pieces

Viktória Burkus∗

Attila Kárpáti†

Supervised by: László Szécsi‡

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

This paper presents a method to create plant models that
can be displayed efficiently and directly on the graphics
card, with real-time animation. Models are constructed
from a finite set of pieces and a set of rules that define
the matching possibilities of the pieces. We use skeletal
animation to allow model instances of identical topology,
created using the same pieces and rules, to assume unique
poses. A level-of-detail scheme using hardware tessella-
tion is also presented. We propose a tiling-based method
for texturing the models, providing seamless, repetition-
free patterning, approximating the great variety observed
in nature, using only a limited set of example textures. In-
tegration with foliage rendering using billboards is also
discussed.

Keywords: Tree Rendering, Procedural Geometry,
Skeletal Animation, Texture Generation

1 Introduction

In computer games and in all computer visualization ap-
plications where vegetation is involved, the challenge of
producing and displaying extensive vegetation geometries
arises. Authoring highly detailed individual models, es-
pecially if a large number of plants is needed, is rarely
feasible. Therefore, procedural generation of geometries
is required. In order to ensure efficient rendering, some
level-of-detail scheme must be employed to reduce the ge-
ometrical complexity of plants at a large distance to the
viewer.

GPUs are able to render instances of the same geom-
etry extremely efficiently. This is particularly important
in computer games that aim for less cost-intensive solu-
tions. In this paper, our basic idea is to build tree models
directly from such instanceable pieces. The pieces must fit
together seamlessly to produce a solid model. Therefore,
they must be interlocking when fitted together appropri-
ately. When generating natural geometries, however, re-

∗burkus.viki@gmail.com
†karpati.attila.a@gmail.com
‡szecsi@iit.bme.hu

peating identical motifs are conspicuous, and impair cred-
ibility. Therefore, even instances of the same base geom-
etry must be processed in some way to introduce variabil-
ity. In this paper, we propose composing trees from in-
stances of a few model pieces, and describe both skeleton
animation and tile-based procedural texturing to achieve
variability. We explore the application of hardware tes-
sellation to set level-of-detail adaptively. Foliage is added
using a billboard-based method.

2 Previous work

2.1 Tree generation and modeling

Lindenmayer systems (L-systems) are the classic ap-
proach for plant simulation using formal rules [12]. The L-
PEACH model [1] and space colonization algorithms [13]
incorporate the competition for space and influencing en-
vironmental factors into the tree growth simulation. Plas-
tic trees [10] allow interactive design by manipulating en-
vironmental factors. This is achieved by reverse engineer-
ing a skeleton for a tree model representing uninhibited
growth, then pruning this model and distorting its struc-
ture using skeletal animation.

In this paper, we do not address the problem of tree
growth simulation, but use a simple rule-based approach
for generating trees. However, we instantly generate both
the tree geometry and a skeleton that could be used for
manual or simulated animation as described in the above
literature.

SpeedTree [14] is an entire suite of modeling and ren-
dering solutions for tree rendering. Trees are built by set-
ting up generators the produce a graph of interconnected
nodes. Our approach is similar in that trees are created by
connecting pieces. However, these pieces directly corre-
spond to geometric building blocks, so our output is not a
triangle-mesh tree model, but a collection of instanceable
pieces. Also, our solution is much more limited in scope,
focusing only on most efficient rendering of relatively sim-
ple models.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

2.2 Tree rendering

Instancing is a hardware feature that can be used to ren-
der many identical pieces of geometry with drastically re-
duced CPU-GPU communication overhead. It is not nec-
essary to display each instance of the geometry with a sep-
arate draw call. Instead, the parameters that vary from
instance to instance (e.g. transformation matrices), are up-
loaded in an instance buffer, and all objects are displayed
with a single draw call, launching GPU pipeline operation.
The advantage of instancing comes from rendering, when
we avoid issuing individual draw call for all copies. Our
approach is based heavily on this technique, as we build
the entire vegetation using a few instanceable pieces, mak-
ing them unique by means of blended transformations and
texturing.

Instancing is also used in systems like SpeedTree [14].
However, SpeedTree only instances complete plants, and
not their parts.

Approximate instancing [6] is a kind of instancing used
for procedurally generated, highly varied and detailed
models that do not contain precisely identical parts. When
using the technique for rendering plants, entire specimen
or their parts are replaced by similar geometries taken
from a finite piece set. Thus, hardware instancing can be
used to achieve efficient display and the difference may
remain unnoticed. Our approach can be considered the re-
verse of approximate instancing because we build the ob-
jects from a finite set of pieces, and then make these ob-
jects unique, while they can still be rendered by instancing.

When rendering a large number of three-dimensional
models (e.g. a forest), it is not feasible to display them
at uniform level of detail. Geometries close to the cam-
era appear large on-screen, requiring high level of detail,
while the geometries away from the camera should be dis-
played at a low level of detail. This achieves better visual
experience than using only low-detail models, with much
smaller resource requirements than using high-detail mod-
els everywhere. Therefore, the process of model genera-
tion should make sure that models are available at different
levels of detail. This is typically achieved by simplifying
a complex model, [5]. Our approach is again the oppo-
site: we build trees using low-polygon-count pieces, and
add details using hardware tessellation and displacement
mapping where necessary.

2.3 Animation

For animating plants, especially branches of trees, it is
possible to use skeletal animation and skinning. The
method we have devised and implemented is very simi-
lar to that of Pirk et al., called plastic trees [10], which
also uses skeletal animation to animate tree branches and
trunks. Contrary to them, our aim is not to simulate foliage
formation influenced by biological effects. In our method,
animation has two important goals. Firstly, the joints of
the pieces can be set to obtain different poses, so mod-

els with the same piece configuration may have different
appearance. Secondly, we can simulate the movements
due to wind or other forces with further, generally finer
changes to the pose.

2.4 Texture generation

In our approach, simple geometries are rendered, and we
rely strongly on textures to provide individual details. We
also generate these textures procedurally. Therefore, tex-
ture synthesis approaches are of interest. Extracting statis-
tical properties from example images to synthetise sim-
ilar textures is a basic approach [11]. Another possi-
bility is finding pixel values based on similar neighbor-
hoods [16, 8]. Image quilting [7] stitches together motifs
from an example image to produce new textures. Tiling-
based methods [3] create a set of tiles that fit seamlessly
if placed adequately, and random tilings can be used to
produce new textures. A tiling-based approach allows the
non-periodic real-time texturing of indefinitely large sur-
faces based on very little tile placement data. Therefore, it
is ideal for our problem of texturing tree pieces.

For generating the tiles themselves from non-tileable
photo examples, we make use of the stitching algorithm
from Image quilting [7], but in a slightly different way than
Cohen et al. did [3].

2.5 Foliage rendering

While billboards are poor for displaying entire trees,
the artifacts are diminished if billboards only represent
branches or groups of leaves. Static billboard clouds are
often used [4]. The approach of 2.5D impostors[15] uses
camera-facing billboards to render leaf clouds. The image
on the billboard is not a static image, but it is dynami-
cally generated depending on the view direction. The bill-
boards are composited with each other and the solid geom-
etry of the scene (e.g. branches) according to the correct
depth information of the leaf clouds in billboards. With
this method, the correct parallax and occlusion effects are
observable when the camera moves. In this paper, we uti-
lize this method for foliage rendering.

3 Solution overview

Figure 1: Generated trees.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

We propose a method for creating trees (Figure 1) that
can be efficiently rendered on a video card. These trees
are composed using pieces taken from a finite set of pos-
sible shapes. The pieces interlock with other pieces with
proper positioning, rotation, and scaling, creating a contin-
uous surface. All pieces are rigged for skeletal animation,
and bones of interlocking pieces are overlapping, produc-
ing a connected skeleton for the entire tree model. Thus,
plants with the same topology, created by assembling the
pieces in the same way, may also have individual pose, and
the movement due to the wind can also be realized. For
texturing the models, we suggest a tile-based procedural
method, which allows each plant to be unique. The model
can be efficiently displayed by the GPU, all instances of
each piece type can be displayed with a single draw call
and the automatic selection of the detail level is ensured by
the tessellation unit. In section 4, we describe the assem-
bly of the pieces, their animation, and the level-of-detail
scheme. In section 5, we suggest a method for textur-
ing. We describe the implementation of foliage rendering
in section 6.

4 Tree model

4.1 Piece modeling

The first task is to create the polygon mesh models of the
pieces of the tree and its branches. We demonstrate the op-
eration of our method with just two models (see Figure 2):
a slightly narrowing cylinder (the I piece) and a model of
a symmetrical fork with co-dominant stems (the Y piece).
These pieces are most suited for species like the almond
tree. Asymmetric forks are possible with just appropriate
scalings in bone transformations, discussed in section 4.3.
Branch–stem attachments (a ` piece), trifurcations (pla-
nar or 3D Ψ pieces) could be handled in a very similar
manner, but those are not demonstrated in this paper.

Figure 2: The I piece and the Y piece, forming the set of
pieces we use to demonstrate our approach.

The pieces must be quad meshes to enable tessellation
and tiled texturing. They must conform to several other re-
strictions to make them interlocking with themselves and

one another. The constraints are explained in the following
sections, where the reasons for them become apparent.

4.2 Piece assembly

The second step is to produce complete tree models us-
ing the pieces. This means the algorithmic production of
the necessary transformations to position, rotate, and scale
the pieces into interlocking poses. For the pieces to fit
together, we formulate several requirements for the piece
geometries. We define edge loops on the polygonal mod-
els where the models should fit together. We refer to these
as rims. Each model must have a root rim and may have
any number of leaf rims. The root rim connects the piece
to the tree trunk, or a parent stem. Additional pieces can
be added to a particular piece joining at a leaf rim. All rims
must be homographic in the geometrical sense, i.e. there
must exist, for any two rims (even if they are in different
pieces), a projective transformation that maps one to the
other. This makes it possible to transform a piece in such a
way that its root rim interlocks with the leaf rim of a parent
piece, producing a continuous surface.

We have chosen a regular hexagon as the universal rim
edge geometry, and limit the transformations to similari-
ties. This means that there is not only one, but six pos-
sible transformations fitting a root rim to any leaf rim.
This increases the variability of possible models, while
smaller twists are easily handled with skeletal animation
later. This choice also allows low-poly piece geometries,
while more details, and smoother branches, can be imple-
mented in the tessellation and texturing phases.

The root rim of all models has the same orientation and
size in their respective model spaces. Identical root rims
guarantee that we can fit any other root of another piece to
the leaf rim with the same transformations. These trans-
formations are stored as metadata for the piece models.
When modeling the pieces, the transformations also have
to be produced. We refer to them as the building trans-
formations of the piece model. Figure 3 shows a two-
dimensional drawing of the Y model. The building trans-
formation for the right leaf rim is the transformation that
transforms the lower red coordinate system into the upper
red coordinate system.

Figure 3: A building transformation maps the root rim of
any piece to a leaf rim.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

To determine the poses of the piece instances, we first
compute the topological transformations (i.e. the piece
transformations for the non-animated tree). The first step
is choosing a root piece. All other pieces are matched
in the root piece’s modeling coordinate system. In other
words, a transformation must be calculated that transforms
the piece from its own modeling coordinate system into
the root piece’s modeling coordinate system. These can
be obtained recursively. The topological transformations
of the pieces that interlock with the root piece are the same
as the building transformation defined for the root piece’s
leaf rims. The topological transformation of any piece
interlocking with any parent piece consists of two parts.
The first transformation is the topological transformation
of the parent, which transforms the new piece to the par-
ent’s pose, root rims coinciding. The second transforma-
tion is a building transformation. Applying its topological
transformation on each piece leads to the pieces aligned to
form a coherent tree. Then the whole tree can be trans-
formed into the world’s coordinate system from the root
piece’s modeling coordinate system. For this, the mod-
eling transformation of the tree should be applied to all
the pieces after the topological transformation. Figure 4
shows the tree constructed in such a manner.

Figure 4: A tree constructed of Y pieces only, using the
topological transformations.

4.3 Skeletal animation

To animate tree pieces, we use linear blend skinning an-
imation. We define a skeleton for morphing the polygon
mesh model of a piece. The root joint is always at a pre-
determined position and orientation in the center of the
root rim. The vertices of any rim can be linked to exactly
one joint, with unit weight. Thus, in a tree model com-
posed of pieces, the skeletons can be connected by simply
connecting the root joint of every piece’s skeleton to the
terminal joint that belongs to the parent piece’s matching
leaf rim.

Figure 5 shows the skeleton hierarchy of the Y model.
When animating the tree, the root joint is connected to
the parent’s terminal joint rigidly, as rotating the root joint
would cause the rims not to fit.

The bone transformations for the tree are computed sim-

Figure 5: Skeleton hierarchy of the Y model. The coloring
of the model illustrates the vertex blending weights that
belong to the root joint. The vertices of the root rim are
completely white, so they are entirely dependent on the
root joint. The vertices of leaf rims are completely black,
so they are not bound to the root joint.

ilarly to the topological transformations discussed earlier.
The difference is that building transformations are now re-
placed with joint transformations of the animated skele-
ton. The root bone transformation of each piece instance
is computed by taking the terminal bone transformation
of the parent, and appending the terminal-joint-to-leaf-rim
transformation.

In typical implementations, the maximum number of
blending weights per vertex is four. The blend indices
vertex attribute identifies the bones that have non-zero
weights. This allows any geometry rigged for skeletal an-
imation (including our pieces) to have a high number of
bones. We place the transformations of all bones of an
animated tree in a single buffer. For every piece instance
we record the offset where its bone transformations are
located in the buffer. This offset is added to the blend in-
dices in the skinning vertex shader. Thus, there is no limit
imposed on the number of bones or pieces.

Figure 6 shows an animated tree in an altered pose.

Figure 6: A skeletally animated tree with randomized joint
transformations.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

4.4 Level of detail

In order to produce pieces in different levels of detail we
use hardware tessellation. Depending on the distance from
the camera, we suggest an exponentially decreasing reso-
lution level with a suitably selected maximum for the run-
ning environment. Since our model is a quad mesh model
and normal vectors are known, the task is a PN patch tes-
sellation. We considered two algorithms that solve this
problem: Phong tessellation [2] and local, polynomial G1
PN quads [9]. We found Phong tessellation more appro-
priate to tessellate multiple models at runtime, as it has
lower computational cost.

Figure 7: Phong tessellation [from Boubekeur et al.[2]].

Figure 7 illustrates the tessellation of a triangle as de-
scribed by Boubekeur et al.[2]. However, we work with
quads instead of triangles. Consequently, the algorithm
had to be adapted to tessellating quads. The difference
is that when calculating interpolation weights, we use bi-
linear interpolation over four points. This can be imple-
mented in a domain shader when using hardware tessella-
tion.

We guaranteed that rim vertices of interlocking pieces
match without tessellation. When tessellation is used, the
matching of newly created vertices must also be guaran-
teed. Firstly, it is necessary to guarantee that the number
of new rim vertices on both pieces are equal. Secondly,
they must also have matching positions. To guarantee that
the tessellation levels are equal, it is enough to guarantee
identical on-edge tessellation levels, because the models fit
at the edges. This can be achieved if the tessellation levels
of edges are only dependent on the properties of the two
vertices. It is also important that both vertices are symmet-
rically included in the calculation, so the tessellation level
does not depend on the order of the vertices. For exam-
ple, the average of two positions is symmetrical, so it does
not depend on the order of the vertices. As a result, the
tessellation level of the edges are determined based on the
average of the two vertex positions and its distance from
the camera position. The tessellation level of the edges
and inner points should be similar to get a good tessella-
tion. For this reason, we determine the tessellation level
of the inner points according to the distance of the camera
from the average position of all four vertices of the quad.

The position of the new vertices depends on the posi-
tion of the vertices and the normal vector. Accordingly,

when joining the vertices of the rim, not only the positions
must be the same, but also the normal vectors. This is
a property of piece model geometry that we would want
not only for tessellation, but also for continuous shading.
Therefore, not only the positions, but the normals are also
pre-determined for all rim vertices. For the normals to be
consistent with the surface orientation, the quad loops at
the rims always form a (tessellated) cone surface with a
universally fixed aperture angle. Note that this does not
impose a fixed-aperture cone shape on tree branches, as
joint transformations may include longitudinal scalings to
achieve any aperture. Figure 8 shows the original model
and a tessellated version.

Figure 8: Different levels of detail achieved using GPU
tessellation.

5 Texture generation

5.1 Tiling for piece geometries

In order to enhance the detail and plausibility of the tree,
bark or other surface details can be realized by texturing.
The first possible solution is to apply the same texture im-
age on the surface of every piece instance, but this should
be avoided because all pieces would look the same. In-
stead, we propose texture tiling, placing a different im-
age on every quad’s surface. Our goal is to select an im-
age semi-randomly from a predetermined set of textures,
so that the tile configuration on each model instance will
be different, which results in pieces with unique appear-
ance. We need to observe alignment rules to match the
tiles seamlessly. These are usually expressed in terms
of tile edge colors that must be identical for two tiles to
match. Our current implementation assumes a special lim-
ited case, where all model edges have a fixed color (see
Figure 9 for a color coding of edges). This means that the
frame of the texture tiles fitting on a quad is fixed, and only
the insides of the tiles may change. We propose a method
to generate such sets of tiles in section 5.2. Please note
that our method can easily be generalized to any sets of
tiles with any edge colorings, e.g. using the random tile
placement described by Cohen et al. [3].

We create a texture array that we upload the tile texture
images to. With our simple assumption of a static patterns
on all edges, the quads of the model can be classified ac-

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: An example of a edge colors for tile matching.
Black edges are quad borders. Color triangles on the poly-
gon border indicate edge color.

cording to the rules that the tiles they accept must obey.
It is possible to tile the I model with a single such class of
tiles, and the Y model only needs a second class of tile near
the fork, as indicated by the numbers shown in Figure 10.

Figure 10: Types of polygons. These numbers determine
what kind of images the quads accept from the texture ar-
ray.

Figure 11 represents the texture array. Multiple images
can be added to the type 1 and 2 polygons:

Any quad may be assigned one of the matching tiles
at random. This assignment should be different for every
piece instance, and part of the instance data, along with the
bone index offset for the animation. In order for the pixel
shader to decide which slice of the texture array should be
used for the currently rendered polygon, this data about the
tile arrangement must be passed. The information on the
processor side can be saved in a single array that contains
the indices of the tiles, i.e. the texture array slices. The
array size is the quad count of the model, and it is indexed
with the primitive ID available in the GPU pipeline. The
number read from the array is used to address the texture
array.

Figure 11: Illustration of the texture array. Different col-
ors represent different patterns, similar arrows represent
images with identical matching options.

5.2 Tile set generation

To create texture tiles with edges matching given patterns,
we use a variant of the stitching process described for im-
age quilting [7]. The frame of the texture is given as four
images aligned that must appear along the edges, but the
inside is freely selectable. This means we are able to gen-
erate a large number of textures even with identical edge
colors.

In order to generate such textures from photo images,
we select a few (appropriately generic) photos to serve as
edge patterns, one for every edge color. Then, any im-
age we would like to show up in the tile is stitched to-
gether with all four edge images using the image quilting
approach. This means that a minimum error cut separating
the overlapped images is found using dynamic program-
ming.

Figure 12 shows the tile set we use.

Figure 12: Texture set. The picture on the right shows an
example usage of the tile set which is shown on the left
side.

6 Foliage

To render foliage, we chose 2.5 dimensional impos-
tors [15], because they offer correctly depth-tested results
with minimal artistic input. The positions of the billboards
are determined by the pieces of the tree, which can be as-
signed foliage in the tree generation phase. All billboards

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 13: First render stage.

Figure 14: Result of the first render pass producing the
2.5D impostor texture.

display the same leaf cloud. In case of 2.5 dimensional im-
postors, the billboards are supplemented with depth infor-
mation . Billboard fragments can be depth-tested against
one another, and against the solid tree geometry. As the
view direction changes, the geometry on the billboard is
also rotated, so the impostors are always re-rendered ac-
cording to the view direction of the camera.

Using a modeling program, we created a leaf cloud
model. Rendering is executed in two passes. In the first
pass, the model is rendered into texture. (Figure 14). The
direction of the camera does not change, but its position
is aligned with the surface of the sphere around the cloud,
with the camera facing the leaf cloud at the center of the
sphere. Figure 13 shows the first pass. When rotating
the camera, the leaf cloud is rendered at a different an-
gle. The texture of the billboards must always be rendered
according to the view direction of the camera. As a result,
the two-dimensional image of the texture appears three-
dimensional in motion. In the alpha channel of the re-
sulting texture, we save the distance information, that is,
the distance between the position and the billboard, which
helps to determine which leaf is closer to the camera when
multiple images close to each other are drawn. In the sec-
ond pass, the rendered image is used as a billboard posi-
tioned near the appropriate branches. The alpha is used to
determine fragment depth.

Figure 15 shows the result.

Figure 15: Foliage rendered with the 2.5D impostor tech-
nique.

7 Implementation

We implemented our method using DirectX11 and C++.
HLSL was used to program shaders. We used the Ef-
fect Framework for pass scripting, shader constant man-
agement, and texture resource binding. The development
environment was Visual C ++ 2010 Express. For mod-
eling, we used AutoDesk Maya modeling software, from
which models were exported to DAE format. Importing
these files into the project was done using Assimp. Assimp
is an open source library primarily for C and C++, which
made it easy to download multiple 3D file formats into our
project. In addition, we used Boost, which also provides
libraries for C++, so we have extended our implementa-
tion with modern C++ language elements. To create 2D
texture arrays, we used the texassemble program, which
delivers the result in dds format.

8 Results and Conclusions

The completed implementation was run on two different
computers. We generated trees during the execution and
recorded the performance without animation (Figure 16).
To measure the performance impact of the tessellation we
measured the frame time with various tessellation levels.
At the highest level (10) it was 2.8-3.0ms, and at the lowest
level it was around 2.0 ms (measured on an NVidia GTX
950M).

Our solution fulfills our initial requirements. The trees
build up algorithmically from finite set of pieces. The trees
are bearing a certain degree of variation. The trees’ tex-
tures are randomly chosen from the predefined texture set,
while the foliage is aligned to the branches.

We implemented two algorithms for building trees. One
of the algorithms alternates between the two kinds of
pieces. The second chooses randomly from the set of el-
ements using equal probability. Thus, we did not yet ex-
plore how more complex rules or grammars could be used
to replicate real-world tree topologies.

In the future we would like to further demonstrate

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 16: Measurement results.

the capabilities of our solution reconstructing actual tree
species and their bark patterns. We also plan to simulate
motion due to wind attaching springs to the skeleton joints
in a physics engine.

9 Acknowledgements

This work has been supported by OTKA K-124124.

References

[1] MT Allen, Przemyslaw Prusinkiewicz, and TM De-
Jong. Using l-systems for modeling source–sink
interactions, architecture and physiology of grow-
ing trees: The l-peach model. New phytologist,
166(3):869–880, 2005.

[2] Tamy Boubekeur and Marc Alexa. Phong tessella-
tion. In ACM Transactions on Graphics (TOG), vol-
ume 27, page 141. ACM, 2008.

[3] Michael F Cohen, Jonathan Shade, Stefan Hiller, and
Oliver Deussen. Wang tiles for image and texture
generation, volume 22. ACM, 2003.

[4] Xavier Décoret, Frédo Durand, François X Sillion,
and Julie Dorsey. Billboard clouds for extreme model

simplification. In ACM Transactions on Graphics
(TOG), volume 22, pages 689–696. ACM, 2003.

[5] Qingqiong Deng, Xiaopeng Zhang, Gang Yang, and
Marc Jaeger. Multiresolution foliage for forest ren-
dering. Computer Animation and Virtual Worlds,
21(1):1–23, 2010.

[6] Oliver Deussen, Pat Hanrahan, Bernd Linter-
mann, Radomı́r Měch, Matt Pharr, and Przemyslaw
Prusinkiewicz. Realistic modeling and rendering of
plant ecosystems. In Proceedings of the 25th an-
nual conference on Computer graphics and interac-
tive techniques, pages 275–286. ACM, 1998.

[7] Alexei A Efros and William T Freeman. Image quilt-
ing for texture synthesis and transfer. In Proceedings
of the 28th annual conference on Computer graphics
and interactive techniques, pages 341–346. ACM,
2001.

[8] Sylvain Lefebvre and Hugues Hoppe. Parallel con-
trollable texture synthesis. In ACM Transactions on
Graphics (ToG), volume 24, pages 777–786. ACM,
2005.

[9] Chavdar Papazov. Local, polynomial g 1 pn quads.
In International Symposium on Visual Computing,
pages 63–74. Springer, 2014.

[10] Sören Pirk, Ondrej Stava, Julian Kratt, Michel Ab-
dul Massih Said, Boris Neubert, Randomir Mech,
Bedrich Benes, and Oliver Deussen. Plastic trees:
interactive self-adapting botanical tree models. ACM
Transactions on Graphics, 31(4):1–10, 2012.

[11] Javier Portilla and Eero P Simoncelli. A paramet-
ric texture model based on joint statistics of complex
wavelet coefficients. International journal of com-
puter vision, 40(1):49–70, 2000.

[12] Przemyslaw Prusinkiewicz. Graphical applications
of l-systems. In Proceedings of graphics interface,
volume 86, pages 247–253, 1986.

[13] Adam Runions, Brendan Lane, and Przemyslaw
Prusinkiewicz. Modeling trees with a space coloniza-
tion algorithm. NPH, 7:63–70, 2007.

[14] SpeedTree. SpeedTree. http://www.
speedtree.com/, 2018. [Online; accessed
18-February-2018].

[15] Gabor Szijarto and Jozsef Koloszar. Real-time hard-
ware accelerated rendering of forests at human scale.
Journal of WSCG, 12(1–3), 2004.

[16] Li-Yi Wei and Marc Levoy. Fast texture synthesis
using tree-structured vector quantization. In Pro-
ceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 479–488.
ACM Press/Addison-Wesley Publishing Co., 2000.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

http://www.speedtree.com/
http://www.speedtree.com/

	Introduction
	Previous work
	Tree generation and modeling
	Tree rendering
	Animation
	Texture generation
	Foliage rendering

	Solution overview
	Tree model
	Piece modeling
	Piece assembly
	Skeletal animation
	Level of detail

	Texture generation
	Tiling for piece geometries
	Tile set generation

	Foliage
	Implementation
	Results and Conclusions
	Acknowledgements

