
Example-Based Stylization of Navigation Maps on Mobile Devices

Ondřej Texler∗

Supervised by: Daniel Sýkora†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University
Prague / Czech Republic

Abstract

In this paper, we present a system which allows fast trans-
fer of artistic style from a hand-drawn exemplar to a nav-
igation map. We demonstrate how to reduce the compu-
tational overhead of current example-based style transfer
techniques by using fast bitmap operations which replace
texture synthesis at places where it is not necessary to sat-
isfy high-quality results. In addition, we also demonstrate
how to utilize parallel processing and hardware accelera-
tion on the GPU to further reduce the computational over-
head and achieve interactive response on a mobile device.

Keywords: Stylization, Texture Synthesis, Example-
Based, Occurrence Map, Parallelization, Mobile Device

1 Introduction

Example-based stylization is a complex problem. In mod-
ern computer science, there has been a lot of research in
this field, and remarkable progress in both quality and
speed of a texture synthesis has been made.

Many state-of-the-art stylization approaches work well
on complex images, for example, photos, but fail on sim-
ple images like a screenshot from a map. Mainly convolu-
tional neural network approaches suffer from this problem,
see Figure 3. In a complex scene and a complex artis-
tic style, it is easy to hide some glitches without notice.
Based on the analysis of related and recent work, details
can be found in the Section 2, StyLit [7] is currently the
best and the most suitable technology for map stylization.
This paper deals with adopting and extending the StyLit
approach to navigation maps.

Texture synthesis has many artistic and entertainment
applications. The visual quality often needs to be compro-
mised, when the available computional budget is low. It is
especially case of interactive computer games and mobile
phones. When it comes to the quality of the synthesis, the
StyLit approach works well. However, it is not fast enough
to obtain an interactive response on mobile devices.

∗texleond@fel.cvut.cz
†sykorad@fel.cvut.cz

We present a new method reducing computational over-
head by replacing stylization of some parts of the image
by fast bitmap operations. Texture synthesis based on the
StyLit approach is integrated into the existing mobile nav-
igation Dynavix as a prototype. It allows the user to create
his own map style, typically by painting on a paper and
scanning it or by using any graphics editor. This custom
map style is then used to stylize the given navigation map.
Details of integration are also provided. Figure 1 shows
example of map stylization, where the image B shows a
real screenshot from the Dynavix navigation application
and the image B’ shows the final stylized result.

Organization of the paper is following. First, related
work and current state-of-the-art approaches are men-
tioned briefly. Next, the texture synthesis is described in
general and defined more formally followed by a solution
of the texture synthesis with all previously mentioned im-
provements. Finally, implementation and integration into
Dynavix is described and results are presented.

2 Related Work

In recent years, many different approaches dealing with
digital paintings creation have been published. A generic
example-based technique The Lit Sphere was introduced
by Sloan et al. [19]. A shaded sphere painted by an artist
is used as the style example and pixels from this exem-
plar are transferred to the target 3D model using texture
mapping. Patch-based synthesis with more complex illu-
mination guidance was proposed in StyLit [7].

Image Analogies is a concept proposed by Hertzman et
al. [10]. There are two pairs of images, source images and
target images, one image in the pair is filtered-stylized and
one is unfiltered. The stylization is described by the source
image pair. The algorithm iterates over unfiltered target
pixels and finds the most similar location in the unfiltered
source image and transfers the look from the filtered coun-
terpart. However, this approach suffers from introducing
visible seams, repetition and other artefacts and does not
preserve the visual appearance of used art tool.

Another example-based region-growing approach is by
Efros et al. [6], where the new texture is generated one

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



A - Sample Guide A’ - Sample Style B - Output Guide B’ - Output

Figure 1: Real demonstration of navigation map stylization. Both A and B are screenshots from Dynavix. A’ is a crayon
drawing made by a human and scanned. B’ is the result of the synthetization algorithm.

pixel at a time. Given a sample texture image, a new image
is initialized by a patch from the sample texture and this
patch in the new texture is grown pixel by pixel. Another
approach is proposed also by Efros et al. [5]. The new
texture is not growing one pixel at a time but one patch at
a time. New pixels or patches in both previous approaches
are determined based on their similarity with the sample
texture.

Kwatra et al. [15] and Wexler et al. [20] introduced a
texture optimization technique. They defined a similarity
metric for measuring the quality of synthesized textures
with respect to a given input sample by Markov Random
Field. They then formulated the synthesis problem as a
minimization of an energy function by using expectation-
maximization-like algorithm. In contrast to the region-
growing approaches, it is not synthesized one pixel at
a time or one patch at a time, but the whole new tex-
ture is refined many times in iterations, from randomly
initialized, through coarse texture to the sharp, fine and
faithfully-looking texture.

In recent work of Fiser et al. [8] and of Barnes et al. [2],
the original Hertzman’s [10] algorithm was replaced by
the texture optimization technique. This new approach is
ideally suited for the controllable synthesis of textures and
other adjustments, but it suffers from the so-called wash-
out effect described by Newson et al. [16] and examined
in more detail by Jamriška et al. [11]. The wash-out effect
makes parts of the new texture smoothed or blurry. This
undesired effect is caused by an extensive use of a small
amount of the same or similar patches from which a new
texture is composed. Many strategies have been devel-
oped to deal with the wash-out effect, e.g. color histogram
matching by Kopf et al. [14], and bidirectional similarity
by Simakov et al. [17]. These approaches work well in
case of the source being mostly stationary without many
nearly-homogeneous patches. Unfortunately, it does not
work well on realistic style examples. More robust mitiga-
tion of the wash-out effect by encouraging uniform patch
usage was recently published by Kaspar et al. [13] and
Jamriška et al. [11].

Recently, many alternative approaches were developed
to achieve computer-assisted stylization by using Neural
Networks. Artistic Style [9] uses a deep convolutional
neural network VGG [18] trained for object recognition,
the VGG-Network is used for extracting information from
a texture, it can extract information about both style and
content. Texture synthesis is represented as the minimiza-
tion problem solved by an iterative gradient descent. This
approach has impressive results in some cases. Since
the VGG network is trained on natural images, it does
not work well on images with synthetic appearance - like
computer-generated maps. Extension of this approach,
along with the original Hertzman Image Analogy [10] con-
cept, results in the Deep Image Analogy [12], that uses
VGG as well.

3 Texture Synthesis

At first in this section, the Image Analogy concept is de-
fined. Next, we focus on the texture synthesis in general,
various texture synthesis methods and types are presented.
The section also contains a formal definition of the prob-
lem, the definition of an energy and a description of global
optimization approach.

3.1 Image Analogies

Image Analogies is a concept originally defined by Aaron
Hertzman [10] and nowadays it is widely used to define
example-based guided texture synthesis. It describes rela-
tion (analogy) between two pairs of images, see Figure 1.
The first pair are the images A and A’, the second pair are
the images B and B’. There is an analogy between the im-
ages A and B and between A’ and B’, meaning the image
A’ has the same relation to the image A as the image B’
to the image B. Hertzmann in Image Analogies [10] likens
the problem of synthesis to the filtering and defines, that
given a pair of images A and A’, where A is unfiltered and
A’ is a filtered source image, along with some additional

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



unfiltered target image B, a new filtered target image B’ is
synthesized.

The Hertzman’s definition means that we have an exam-
ple of some unknown filtration f(A) = A’ which transforms
the image A to A’. Since A and A’ are known, filtration f
can be reconstructed and applied to the another unfiltered
image f(B) = B’. Image B’ completes the analogy. In this
paper we will also refer to the example image A as sample
guide, the stylized image A’ as sample style, the image B
as output guide and the stylized image B’ will be called
output.

3.2 Texture Synthesis Taxonomy

The research in texture synthesis was quite active in the
last two decades, and since there are many texture syn-
thesis approaches, we can classify them into the follow-
ing categories. Example-based vs. Procedural, Region-
Growing vs. Global Optimization and Guided vs. Non-
Guided texture synthesis.

From the texture generating point of view, we can dis-
tinguish between the example-based and the procedural
approach. In case of procedural texture synthesis, the new
texture is generated using predefined parts and methods
following predefined patterns. For example, a texture is
composed of a predefined set of brush strokes and polished
using particular filters and effects. The Example-based ap-
proach is more generic, it tries to infer the generative pro-
cedures based on a set of examples, meaning it does not
depend on the specific algorithm. An example of a style
has to be provided and the new image is created based on
this example.

We can also categorize texture synthesis approaches
into the Region-Growing category, where the new texture
grows one pixel or one patch at a time, or into the Global
Optimization category, where the whole texture is refined
in multiple iterations, from coarse initialization to a finite
and faithfully looking texture. Global optimization ap-
proaches allow controlling the texture synthesis process
more intuitively.

We can distinguish between guided and non-guided
synthesis. In case, we synthesize simple texture in or-
der to make it bigger, no guide with extra information of
the content is needed, so it is called normal or non-guided
texture synthesis. If more complex image is synthesized,
guide images describing a content of the sample image and
output image needs to be provided. Guide images allows
texture synthesis distinguish between different parts of the
image, so it is called guided synthesis.

Based on this categorization, the technique described in
this paper falls into the Example-based, Global Optimiza-
tion and Guided texture synthesis categories.

3.3 Global Optimization

This approach was originally published by Wexler [20]
and later by Kwatra [15]. They define texture synthesis as

the problem of energy minimization using the expectation-
maximization-like algorithm. The energy function E of a
texture B’ with respect to the sample style S is defined as
follows:

E = ∑
x∈B′

min
s∈S

[SSD(x,s)] (1)

In other words, energy E is the sum of distances of each
patch from texture B’ to its closest patch in texture S. In
this paper, term patch means small squared region of pix-
els usually of size 5 x 5 pixels. The distance between two
patches is computed using the Sum of Squared Distances
(SSD) similarity measure method. As can be seen, energy
E would be zero if for each patch from texture B’, a perfect
match in the texture S is found. We will see later, that this
definition of energy is not robust enough.

First of all, the Nearest-neighbor field (NNF) needs to
be defined. It describes the relation between two textures.
Let A’ and B’ be textures (e.g., A’ can be our sample style
texture and B’ can be our output texture). Let ϕ be some
patch similarity metric (i.e., SSD). We can define NNF as
follows:

NNFB′→A′(P) = min
Q∈A′

[ϕ(P,Q)] (2)

P is an arbitrary patch from image B’. NNF is the map-
ping of all patches from image B’ to some patches of im-
age A’. This mapping is not injective, multiple patches
from image B’ can be mapped to one particular patch from
image A’.

The Expectation Maximization algorithm is used for op-
timization in circumstances where both, the desired vari-
ables, and the parameters of the energy function being op-
timized are unknown. In terms of Expactation Maximiza-
tion algorithm, image B’ is the desired variable, while the
NNF represents parameters. The estimation of image B’
by refining it in multiple iterations in order to minimize
the texture energy E corresponds to the E-step, while find-
ing the NNF corresponds to the M-step.

In other words, given the sample texture, the new texture
is synthesized. As long as the new texture does not look
similar as the sample texture, the new texture has high en-
ergy and it is changed in a way to look more similar as
the sample texture, meaning it is changed in such a way
to have lower energy. In each iteration, each pixel from
the new image is evaluated as the average of several pixels
from the sample texture. Generally, more iterations lead to
better results.

3.4 Problem Formulation

We will define the energy exactly how Kwatra [15] defines
it using the NNF and we will extend it two times. First,
we will augment this definition by guide images. Second,
the definition will be augmented to mitigate the wash-out
effect.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



Suppose we have textures denoted as in Figure 1, ϕ is
some similarity measure method, energy E using the NNF
is defined as follows:

E = ∑
s∈B′

ϕ(s,NNFϕ

B′→A′(s)) (3)

This is the energy definition by Kwatra [15]. Since
Kwatra’s approach is not guided synthesis it does not deal
with sample guide A and output guide B. This means, we
have to extend this energy definition by guide images.
NNFϕ

B→A is NNF coputed on guide images. NNFϕ

B′→A′

returns style patch and NNFϕ

B→A returns guide patch.
To simmplify a notation, we will use NNFs instead of
NNFϕ

B′→A′(s) for style Nearest-neighbor field and NNFg
for guide Nearest-neighbor field respectively.

Following is definition of texture energy E extended by
guide images:

E = ∑
s∈B

α ·ϕ(s,NNFs)+β ·ϕ(s,NNFg) (4)

Parameters α and β are optional and can be used to
make synthesis follow more guide than style or follow
more style than guide.

Kwatra’s original definition of energy is not robust
enough and suffers from the so-called wash-out effect [16],
an undesired effect which occurs when a small amount of
same or similar patches from the sample texture A’ are
used too excessively when a new output texture B’ is syn-
thesized. To mitigate the wash-out phenomenon, Kaspar et
al. [13] defines patch penalization. Energy function aug-
mented by the patch penalization is following:

E = ∑
s∈B′

α ·ϕ(s,NNFs)+β ·ϕ(s,NNFg)+λ · Ωocc

ωbest
(5)

Our energy definition is now the difference between
patches in style plus the difference between patches in a
guide plus patch penalization. Ωocc returns the count of
how many times was a particular patch used so far (its
pixels respectively). ωbest is the ideal number of usage
of this particular patch, it is computed automatically us-
ing the guide images, details are described in Section 3.6.
Parameter λ determinates how big is the penalization for
patches which are used more often than they should be.

3.5 Texture Synthesis Algorithm

See Algorithm 1. Significant improvements in both speed
and quality are achieved by using a multi-resolution ap-
proach. The sample texture, as well as both guide textures,
are downsampled to half of their original resolution a few
times, according to the parameter LEVELS. The synthesis
then starts from the lowest resolution. Multiple iterations,
given by the parameter N, are performed on each resolu-
tion level. When transitioning to a higher resolution level,
the output texture is upsampled.

At first, output image B’ is initialized by random col-
ors, then it is refined in multiple iterations, upsampled and
refined again to a fine and faithfully looking texture. In
some literature, this iterative approach is called ”coarse-to-
finite”. In each iteration, NNF is computed and each pixel
of the new output texture is evaluated based on the men-
tioned NNF using the so-called voting method. In voting
method, all patches from NNF are stacked on each other
and its corresponding pixels are averaged in order to cre-
ate new texture. Parameters A, B, A’ and variable B’ are
images according to the image analogy, Figure 1.

Algorithm 1 Texture Synthesis - Multi-Resolution

function TextureSynthesis(A, B, A’, N, LEVELS)
B′ = random colors
for lvl = 0 : LEVELS do

A↓ = Downsample(A,2LEV ELS−lvl)
B↓ = Downsample(B,2LEV ELS−lvl)
A′↓ = Downsample(A′,2LEV ELS−lvl)
for n = 0 : N do

NNF = f indNNF(A↓,B↓,A′↓,B
′)

B′ = voting(NNF,A′↓)
end for
if lvl < LVLS then

B′ = upsample(B′,NNF)
end if

end for
return B’
end function

3.6 Map Segments Guidance

Since we do not synthesize only one texture but the entire
image with more complex content, guidance is needed to
distinguish between different parts of the synthesized im-
age. A computer-generated map usually consists only of a
small amount of regions and therefore only from a small
amount of colors. Guide images in Figure 1 consist from
five different colors - blue color for water, yellow color for
bigger roads, white color for smaller roads, pink color for
built-up areas and sand color for grass areas. This inherit
segmentation of computer-generated maps is ideally suited
to be used as the guide for synthesis. Later in this section,
the term ”segment” is used to refer to a map component
like water, road, built-up area, etc.

In Eq. 5, parameter ωbest is mentioned. Finding a good
value of ωbest in general case is a very complex problem.
In our case, ωbest can be computed separately for each seg-
ment as follows:

ωbest(segment) =
out put[segment].size
sample[segment].size

(6)

If ωbest is set correctly, NNF will probably assign
patches between same segments, for example, most of the
water patches from the output guide will be assigned to
water patches from the sample guide.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Sample Guide (b) Sample Style (c) Output Guide

(d) Grass (e) Water (f) Road 1 (g) Road 2 (h) Builtup

(i) Mask (j) Initialization (k) Final result

Figure 2: Illustration of the Pre-synthesized Textures
Speed-Up. At the top row, input images A’, A and B are
shown. The middle row contains pre-synthesized textures,
and the bottom row demonstrates synthetization process.

3.7 Pre-Synthesized Textures Speed-Up

The novelty that we bring into the texture synthesis is re-
ducing the computational overhead by replacing expensive
synthesis operations by fast bitmap operations. As we de-
scribe in the Section 3.6, computer-generated maps consist
of a small amount of segments, therefore, there is a possi-
bility to pre-generate the texture of each segment and use
these textures to speed-up the synthesis, see images (d) to
(h) at Figure 2. Pre-synthesized textures are part of the in-
put and are created using the texture synthesis algorithm
described in Section 3.5.

At first, a mask around the edges of the output guide is
computed, see image (i) at mentioned figure. Areas near to
the edges are initialized with random colors, areas far from
the edges are initialized by pre-synthesized textures based
on the content of the output guide, see image (j). Since the
texture synthesis approach used in this paper is the global
optimization method, this coarse composed image is then
optimized in multiple iterations in order to make borders
between segments faithfully-looking, see final result (k).
Synthesis is applied only around the edges, therefore a sig-
nificant speed-up is achieved without losing the quality.

4 Implementation

Our ultimate goal was to integrate texture synthesis into
the mobile navigation application Dynavix and optimize

stylization to work well and fast on navigation maps. Be-
side using pre-synthesized textures described in the sec-
tion above, another significant speed-up is achieved by
parallelization of the most time-consuming parts on the
GPU using OpenCL standard.

4.1 Dynavix Integration

Implementation of this paper was integrated into an exist-
ing mobile navigation Dynavix as a prototype. Dynavix
offers GPS navigation and maps for Android devices. In
this section, we will describe the details of this integration.

Dynavix uses OpenGL technology for both map and
map widget rendering, and the Android Framework for
the rest of its user interface. In the first phase, a map is
rendered using OpenGL. In the second phase, map wid-
gets are rendered over the previously rendered map, also
by OpenGL. In the third phase, the remaining Android UI
is rendered over it. The prototype of map stylization was
inserted between the first and the second phase. See pseu-
docode 2 of initializing and running a map stylization in
Dynavix.

Algorithm 2 Dynavix Main

function DynavixMain()
textureSynthesis = create TextureSynthesis object
textureSynthesis.loadSampleAndSampleGuide(...)
textureSynthesis.loadPreSynthesizedTextures(...)
while Dynavix is running do

Render Map by OpenGL
B = Read pixels from OpenGL bufffer
B’ = textureSynthesis.synthesis(B)
Write B’ to OpenGL buffer
Render Map Widgets
Render Android Framework UI‘

end while
end function

4.2 GPU Parallel Acceleration

The most time-consuming part of texture synthesis is find-
ing the Nearest-Neighbor field. Texture synthesis runs
in multiple iterations on multiple resolution levels and in
each iteration, NNF is computed. NNF matches each patch
from output texture B’ to the closest patch (with respect to
the patch penalization) in sample style A’. In our case NNF
is computed by using a brute-force-like algorithm, mean-
ing for each patch from B’, the entire image A’ is searched.
Suppose that the width and height of both images A’ and
B’ is n, thus complexity of the NNF computing is O(n4).

For simplification, suppose we are not dealing with
patch penalization, meaning this brute-force-like algo-
rithm is ideally suited for parallelization. For each patch
from image B’, texture A’ can be searched independently.
During computing of the NNF, texture A’ is accessed only

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



for reading, so there is no need for any explicit synchro-
nization and the process can be naturally parallelized.

5 Results and Comparison

This section starts with a comparison of the quality of
our synthesis implementation with nowadays very popular
convolutional neural networks. Next, several experiments
with the pre-synthesized texture improvement followed by
experiments with infinite zooming demonstrate how wide
the usage of texture synthesis really is.

5.1 Comparison with CNN Approaches

In past years, there has been a big expansion of the con-
volutional neural networks into the field of image styliza-
tion. Convolution neural networks have impressive results
if they are used for the stylization of complex paintings.
In case of simple style and simple guide, most of neural
network approaches do not work well. Figure 3 shows a
comparison of our results with three neural approaches.
From left to right: Neural Doodle [4], Artistic Style[9]
and Deepart.io [3]. Implementations of Neural Doodle and
Artistic Style are available as python code on GitHub and
Deepart.io has a web page application. The image used
as the output guide is the same as image B on Figure 1.
As can be seen, our result is significantly better than any
other result. According to the Deepart.io web application
[3], it has good results when the sample style and out-
put guide are more complex, however in our simple map
scenario, Deepart.io results are insufficient. Artistic Style
completely failed to capture colors, while Neural Doodle
failed to capture the content.

5.2 Pre-Synthesized Textures Experiments

In case of the pre-synthesized improvement, the output im-
age is initialized with pre-generated textures and only ar-
eas around the edges are synthesized. The quality of the
result is given by the size of the synthesized area around
the edges. Pre-synthesis only has effect when the marked
area around the edges is positive and does not cover the
whole or most of the image. Figure 4 shows multiple re-
sults for different sizes of the synthesized area around the
edges. As can be seen, results (a), (b) and (c) look al-
most the same, meaning we need to synthesize only a re-
ally small area around the edges to get a faithfully-looking
result. Optimal mask thickness depends on the particular
style, we consider mask of size 2px or 4px to be sufficient
for most of the styles.

Table 1 shows computational times for different mask
thickness. Four of the resulting images are shown at Fig-
ure 4. Resulting images has size 360 x 360 px, and mea-
surements were performed on a single core CPU. As can
be seen, synthesis using pre-synthesized improvement is
orders of magnitude faster than full image synthesis.

Table 1: Pre-synthesized speed-up

Mask Thickness Time
Full image ∼10 minutes

8 px 20859 ms (±100ms)
4 px 9342 ms (±100ms)
2 px 2376 ms (±100ms)
0 px 2 ms (±1ms)

5.3 Zoom Experiments

Texture synthesis, as described in this paper, has a wide
use. It can be used, for example, to achieve infinite zoom-
ing on a texture. Given the sample style, texture is syn-
thesized on each zoom level, meaning the zoomed texture
has the same texture appearance and quality as the origi-
nal texture. See examples on Figure 5. Zoom is performed
without losing the quality and resolution of the texture.
Light-blue areas on the water may look like glitches, but
they are a part of the style. In the original texture, there is
light-blue water near the shore and dark-blue water in the
center of the river. However, guide images do not distin-
guish between them, meaning the texture synthesis algo-
rithm cannot differentiate between them.

6 Limitations and Future Work

Still, some options for future improvement are available.
The algorithm can be improved in multiple ways and its
implementation can be more effective. Although finding
NNF is, in the case of the pre-synthesized improvement,
computed only around the edges, there is still a possibility
to achieve further speed improvement by using an approxi-
mative method [1]. Moreover, working with a mask during
the NNF computing could be done more efficiently. Al-
though this implementation uses OpenCV, only a few and
very basic structures and functions from this library are
actually used. By removing OpenCV, implementation can
become even more independent. Many other minor things
could also be improved, but mentioned were the most fun-
damental.

7 Conclusions

In the course of this paper, we have begun with a descrip-
tion of the stylization problem in general. We extended
Kwatra’s [15] optimization approach and definition of tex-
ture energy two times. At first, energy was extended from
non-guided texture synthesis to guided texture synthesis.
Second, energy was extended by Kaspar’s [13] occurrence
map Ω in order to mitigate the wash-out effect [16].

We then presented a basic method to solve the guided
texture synthesis problem. It was further extended by map
segment guidance based on the content of the stylized im-
age and computation of Ωbest was introduced. The main

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



(f) Style (g) Deepart.io (h) Artistic Style (i) Neural Doodle (j) Ours

Figure 3: Comparison with CNN approaches - crayon style and pen style. The top left column shows input styles. Middle
three columns show the results of three CNNs. And top right column is the result of our implementation.

(a) Full image (b) 8px mask

(c) 4px mask (d) No mask

Figure 4: Pre-synthesized improvement - different sizes of
the synthesized area around the edges. Full image (a), 8
px (b), 4 px (c), no mask (d).

(a) Original zoom (b) Zoom to 150%

(c) Zoom to 200% water (d) Zoom to 200% road

Figure 5: Infinite zooming. (a) shows original texture. (b)
shows zoom to 150%. (c) shows zoom to 200% on the
water region and (d) shows 200% zoom on the road.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



contribution of this paper is an explanation of speed-up us-
ing pre-synthesized textures. It allows to synthesize only
necessary parts of the image and parts which were once
synthesized can be completely reused.

The texture synthesis algorithm was integrated into the
Dynavix GPS navigation as a prototype. Details of inte-
gration are presented as well. A similar procedure can be
used to integrate texture synthesis into other applications
and pipelines, for example, computer games.

Finally, the results are presented and compared with
other stylization approaches and implementations. Our
results have significantly better quality in map stylization
in most cases. Moreover, computational time is substan-
tially lower, and quality is still within a satisfactory range.
Our implementation does not have any dependencies on
additional resources, like neural networks, databases, etc.,
meaning it is ideally suited for integration into mobile nav-
igation applications or any other pipeline or device.

8 Acknowledgements

This research was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS16/237/OHK3/3T/13 (Research of Modern Computer
Graphics Methods).

References

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B.
Goldman. PatchMatch: A randomized correspon-
dence algorithm for structural image editing. ACM
Transactions on Graphics 28(3), 24, 2009.

[2] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M.
Hu. PatchTable: Efficient patch queries for large
datasets and applications. ACM Transactions on
Graphics 34(4), 97, 2015.

[3] M. Bethge, A. Ecker, L. Gatys, L. Kidziński, and
M. Warchol. Deepart.

[4] A. J. Champandard. Semantic Style Transfer and
Turning Two-Bit Doodles into Fine Artwork. Com-
puting Research Repository, abs/1603.01768, 2016.

[5] A. A. Efros and W. T. Freeman. Image Quilting for
Texture Synthesis and Transfer. SIGGRAPH Confer-
ence Proceedings, pp.341-346, 2001.

[6] A. A. Efros and T. K. Leung. Texture Synthesis by
Non-Parametric Sampling. International Conference
on Computer Vision, pp.1033-1038, 1999.

[7] J. Fišer, O. Jamriška, M. Lukáč, E. Shechtman,
P. Asente, J. Lu, and D. Sýkora. StyLit: Illumination-
Guided Example-Based Stylization of 3D Render-
ings. ACM Transactions on Graphics, 35(4), 2016.

[8] J. Fišer, M. Lukáč, O. Jamriška, Y. Gingold,
P. Asente, and D. Sýkora. Color Me Noisy: Example-
based rendering of hand-colored animations with
temporal noise control. Computer Graphics Forum
33(4), pp.1-10, 2014.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. A Neu-
ral Algorithm of Artistic Style. Computing Research
Repository, abs/1508.06576, 2015.

[10] A. Hertzmann, Ch. E. Jacobs, N. Oliver, B. Curless,
and D. H. Salesin. Image Analogies. SIGGRAPH
Conference Proceedings, pp.327-340, 2001.

[11] O. Jamriška, J. Fišer, P. Asente, E. Shechtman, and
D. Sýkora. LazyFluids: Appearance Transfer for
Fluid Animations. ACM Transactions on Graphics
34(4), 92, 2015.

[12] L. Jing, Y. Yuan, Y. Lu, H. Gang, and B. K. Sing. Vi-
sual Attribute Transfer through Deep Image Analogy.
Computing Research Repository, abs/1705.01088,
2017.

[13] A. Kaspar, B. Neubert, D. Lischinski, M. Pauly, and
J. Kopf. Self Tuning Texture Optimization. Computer
Graphics Forum 34(2), pp.349-360, 2015.

[14] J. Kopf, C. W. Fu, D. Cohen-Or, O. Deussen,
D. Lischinski, and T. T. Wong. Solid texture synthesis
from 2D exemplars. ACM Transactions on Graphics
26(3), 2, 2007.

[15] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Tex-
ture optimization for example-based synthesis. ACM
Transactions on Graphics 24(3), pp.795-802, 2005.

[16] A. Newson, A. Almansa, M. Fradet, Y. Gousseau,
and P. Pérez. Video inpainting of complex scenes.
SIAM Journal of Imaging Science 7(4), pp.1993-
2019, 2014.

[17] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani.
Summarizing visual data using bidirectional similar-
ity. Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2008.

[18] K. Simonyan and A. Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.
Computing Research Repository, abs/1409.1556,
2014.

[19] P. P. J. Sloan, W. Martin, A. Gooch, and B. Gooch.
The Lit Sphere: A model for capturing NPR shading
from art. Proceedings of Graphics Interface, pp.143-
150, 2001.

[20] Y. Wexler, E. Shechtman, and M. Irani. Spacetime
completion of video. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29(3), pp.463-
476, 2007.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Related Work
	Texture Synthesis
	Image Analogies
	Texture Synthesis Taxonomy
	Global Optimization
	Problem Formulation
	Texture Synthesis Algorithm
	Map Segments Guidance
	Pre-Synthesized Textures Speed-Up

	Implementation
	Dynavix Integration
	GPU Parallel Acceleration

	Results and Comparison
	Comparison with CNN Approaches
	Pre-Synthesized Textures Experiments
	Zoom Experiments

	Limitations and Future Work
	Conclusions
	Acknowledgements

