
3D Annotations for Geospatial Decision Support Systems

Silvana Zechmeister ∗

Supervised by: Jürgen Waser †, Daniel Cornel ‡

VRVis Research Center
Vienna / Austria

Abstract

In virtual 3D environments, it is easy to lose orientation
while navigating or changing the view with zooming and
panning operations. In the real world, annotated maps
are an established tool to orient oneself in large and un-
known environments. The use of annotations and land-
marks in traditional maps can also be transferred to vir-
tual environments. But occlusions by three-dimensional
structures have to be taken into account as well as perfor-
mance considerations for an interactive real-time applica-
tion. Furthermore, annotations should be discreetly inte-
grated into the existing 3D environment and not distract
the viewer’s attention from more important features. In
this paper, we present an implementation of automatic an-
notations based on open data to improve the spatial orien-
tation in the highly interactive and dynamic decision sup-
port system Visdom. We distinguish between line and area
labels for object-specific labeling, which facilitates a direct
association of the labels with their corresponding objects
or regions. The final algorithm provides clearly visible
and easily readable annotations with continuous levels of
detail integrated into an interactive real-time application.

Keywords: Map Annotation, Geospatial Visualization,
Open Data

1 Introduction

The economic growth and climate change have a great
impact on the frequency and intensity of natural disas-
ters worldwide. River floodings affect many people and
cause a lot of damage and costs. Therefore, the need for
flood management systems to analyze different flood sce-
narios grows, especially in densely populated areas with
river proximity.
Visdom is a flood management system which supports in-
teractive decision making based on fast geospatial simula-
tion and visualization. It offers the opportunity to test dif-
ferent protection measures, to be prepared for flood disas-
ters and to act correctly in serious situations. A good sup-
port of spatial orientation and navigation in urban 3D envi-

∗zechmeister@vrvis.at
†jwaser@vrvis.at
‡cornel@vrvis.at

Figure 1: Area and street labels integrated into the 3D en-
vironment without anchor elements.

ronments for flood managers, relief workers and other per-
sons involved is needed. A common approach to achieve
this aim is the use of annotations. Thus, this paper cov-
ers the extension of Visdom with labels for different land-
marks to know where the affected areas are located and to
stay oriented while navigating through the system.

The integration of annotations in a 3D dynamic envi-
ronment causes different challenges compared with static
2D city maps. In contrast to static approaches, dynamic
systems need a good trade-off between computation time
and optimal label placement to enable a real-time user in-
teraction. In Visdom, the annotations should not impede
the user by visual distraction or by hiding important simu-
lation data. The major goal is not to place as many labels
as possible but to support the navigation in a subtle way.
These requirements increase the importance of a good vi-
sual integration into the dynamic 3D environment without
additional anchor elements (see Figure 1).
The label data used for the annotations are from Geofab-
rik [4], a free download server which extracts geospatial
data from OpenStreetMap [10] and provides map textures,
line and area shape files. The textures do not allow the
partitioning of label data and thus updating comes along
with loading high volumes of data and long waiting times.
This impedes dynamic updates during runtime, while the
label resolution, orientation and size have to stay static.
Their inflexibility is not applicable with the high interac-
tivity and large zoom range of Visdom. To guarantee label
readability, their font size and orientation should dynami-
cally adapt to the zoom factor and the point of view. Fur-
thermore, texture based labels mapped to the ground are

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



unsuitable for annotating 3D objects such as buildings be-
cause they are hiding their own labels. OpenStreetMap
offers an extensive amount of data which contains line and
area segments with their own labels and partially incor-
rect label text (e.g. ”NULL”). The high segmentation
of lines results in too many labels in the most cases. To
produce appropriate annotations, preprocessing and intel-
ligent label placement has to be executed. When placing a
label along a line, the positioning of its letters is not triv-
ial. They have to follow arbitrary curves which can have
a negative impact on label readability. Thus, the aim is
a label appearance, which is as straight as possible. To
make the depth information more assessable, the anno-
tations should be occluded by other scene objects. The
overlap between two labels should be avoided, since this
would destroy their legibility. It is essential in a real-time
application such as Visdom, to efficiently test labels for in-
tersection with others.
This paper presents an implementation of annotations
which solves the mentioned problems and eases the lo-
calization and identification of streets, rivers, buildings,
places, city districts and other landmarks.

2 Related Work

Prior research dealt with automating and optimizing the
annotation process concerning the quality and quantity of
labels placed on static 2D maps. Research in the area of
dynamic 3D environments with pan and zoom also tries
to accelerate the execution time of the label placement
process. There is a wide area of application for labeling
features, it is used in cartography, geographic informa-
tion systems and point pattern analysis for instance. Thus,
there exist various techniques to find a label placement and
layout according to the annotation application.
Marks and Shieber [9] showed that label placement on a
map is an NP-hard problem and it needs heuristics to la-
bel large quantities of features. There are force-based [3],
slider-based [12] and other algorithms to find an appropri-
ate label placement. To find best possible label positions,
the definition of the optimum is essential. Van Dijk [2]
reviewed existing label placement rules and defined four
categories to evaluate label placement quality. The most
common label features are points, lines and areas to anno-
tate cities, streets and countries for instance. Depending
on the kind of feature, different issues have to be over-
come to determine good label positions. The four feature
dependent quality criteria of Van Dijk are aesthetics, label
visibility, feature visibility and label-feature association.
The use of signed distance fields is a way of text rendering
which tries to overcome the limitation of raster graphics
[5]. The signed distance field texture can be very small
and it still produces crisp text. But this approach does not
accurately represent text contours near to complex inter-
sections and it is not appropriate for very small text sizes
[6]. In such cases, the use of bitmap graphics or the direct

rasterization of vector graphics may produce better results.
Depending on its appearance, a text can attract attention,
be seamlessly integrated into the environment or increase
legibility and the appealing look of the whole 3D scene.
Adding an outline to letters can increase their contrast to
the background. The use of halos around labels, which
clear the space close to them, leads to further readability
improvement [14]. Vaaraniemi et al. [13] introduce meth-
ods to enhance the visibility of labels which are occluded
by other objects of the 3D environment. They propose a
transparency label aura and glowing streets for street la-
bels to achieve this goal. The dynamic change of label
position and orientation enables the adaption to user in-
teraction for better visibility and readability. But such be-
havior can result in flickering and thus distract the user.
To avoid this effect, Maass and Döllner use label blend-
ing and animation [8]. With blending, the labels smoothly
fade in before appearing and fade out before disappearing.
The animation is used to continuously move a label from
one position to another.

3 Preprocessing

The first step of the annotation pipeline is the preprocess-
ing of input data provided by OpenStreetMap [10]. The
data need to be prepared to achieve an efficient further
use and to enable fast rendering. The incoming data are
labels and two different shape types. There are optional
importance and color values available to adapt the label
output accordingly. A label is assigned to a certain shape
and a position on or near this shape. Its corresponding
text might be empty or ”NULL”, depending on the Open-
StreetMap data. In this case the label is not taken into
account. The two different input shapes are lines and 2D
polygons, which are used for streets, places, buildings and
other landmarks. A line is defined by a number of control
points. The connection of all points results in the line to
which the control points belong. A polygon is defined by
a set of consecutive vertices, whereby the first and the last
vertex are the same.
The OpenStreetMap data include numerous street lines
and each represents a street segment with its own label.
If we would render all these labels, it would result in an
overloaded and confusing scene. To avoid this, we want to
merge lines and their corresponding labels together. Our
approach is to merge two street segments together if they
belong to the same street and are adjacent to each other.
When merging street segments, the labels assigned to them
are merged too. This is done by setting the merged la-
bel into the middle of the new merged line segment. But
some restrictions are needed for the line merge process to
prevent merging street segments when the streets cannot
be clearly identified. This is the case if it is not obvious
which direction a street course is following. To avoid such
a scenario we check the angle between the potential end
positions to be merged and if it is acute-angled, we do not

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



merge. This results in streets, which are labeled before and
after strong bends. The polygons have at most one label,
so there is no need for a reduction as for the lines.
The next preprocessing step after the line merge is the la-
bel sorting. Labels are sorted according to their camera
distance and optional importance values. The importance
values are used to improve the final output. More impor-
tant labels are visually differentiated compared with less
important labels and get a preferential treatment. More
relevant labels are rendered first to increase the probabil-
ity of their visibility. But independent of the importance
values, labels near the camera should be paid particular
attention, since these are most likely labels the viewer is
interested in. Thus, labels with the same importance are
treated according to their distance to the camera. The cam-
era distance changes more frequently than the importance
values because it depends on the navigation through the
environment. The labels have to be sorted by their cam-
era distance each frame, but their order according to their
importance stays the same and can be precomputed during
the preprocessing.
Since there is no native support for text rendering in
OpenGL, a custom implementation is necessary. For the
application of rendering label text in Visdom we decided
to use vector graphic fonts which allow an adaptive rasteri-
zation for all required font sizes. In the field of typography,
characters are represented by glyphs and a vector graphic
font contains accessible glyph metrics. With a given label
position, each letter can be placed appropriately by the use
of its metrics. All labels are rendered with the same font,
only in different size and therefore its glyph metrics can
be loaded and stored for later use. Furthermore, texture
atlases containing the most common 256 letters and their
outlines are generated through rasterization of the letter’s
vector graphic descriptions. There are several texture at-
lases needed to cover all required font sizes. If only one
texture atlas would be used and scaled to fit the appropri-
ate font size, the letters would have a poor, upscaled res-
olution. Thus, texture atlases for all initial font sizes are
generated in the preprocessing step.
The last preprocessing step concerns the label orientation
and its great impact on readability. Most languages have
a write direction from left to right and therefore one is
trained to read in the same direction. This holds true for
the annotations in Visdom, which are mostly in German.
This is why we aim to orient the labels from left to right
along the street segments to ease reading. The order of
line control points determines the orientation of the corre-
sponding street label. To adapt the label orientation appro-
priately, the control point order needs to be dynamically
changed according to the current view. For a quick ac-
cess during rendering, the original and the reversed order
of control points are stored.
With this prepared and quickly accessible information,
text rendering can be executed in a fast and efficient way.

4 Label & Letter Placement

After processing the input data, the labels and their indi-
vidual letters need to be placed at the right position. The
label placement is a very complex task with several pos-
sible solutions. Some of them are already mentioned in
section 2. The main criterion for label and letter place-
ment in Visdom is the execution time. It has to be very
fast to be able to afford real-time interaction. But a good
placement has to adapt to the current view to improve its
readability by changing its scale and orientation. As a re-
sult, label placement is view-dependent and is therefore
changing very often and needs plenty of time to process.
Due to this preconditions, the aim is not to find an opti-
mal label placement but a satisfactory and fast placement.
The use of fixed instead of dynamic label positions turned
out as a good choice. It avoids flickering and saves im-
portant runtime through skipping dynamic calculations of
label positions. After the determination of a street or area
label’s position, each character has to be placed along a
street or above a point of interest. Contrary to the deter-
mination of the label position, the letter placement is exe-
cuted dynamically to change its orientation and scale ac-
cording the current view. By means of the glyph metrics,
the letters can be placed in the scene with their positions
only. Thus, the aim is to get the positions for all letters.

Figure 2: Illustration of label (red) and letter positions (or-
ange) on a horizontally placed area label (a) and a street
label placed along its corresponding street (b).

4.1 Area Labels

To determine the letter positions it is necessary to get the
floating label positions first. This is accomplished by shift-
ing up the area’s midpoint. The label position (see Figure
2a, red) is then the position of the middle letter too. Start-
ing from this point each letter is placed horizontally to the
screen by using its corresponding advance. The glyph ad-
vance is the horizontal space needed to place a certain let-
ter accurately and can be extracted from the glyph metrics.
The letter positions are calculated by subtracting the glyph
advance if the letter is to the left of the label position and
adding it otherwise. The orange points of Figure 2a repre-
sent the positions of the letters and the space between them
is referred to as the advance. The final output is a label
which is horizontally centered and floating above its cor-
responding area. Caused by using the screen-space for the
placement, area labels have a constant size and are always
facing the viewer. This means they have a high readability
because the text is not scaled when zooming in or out, has

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



no distortion and is always orthogonal to the screen.

4.2 Street Labels

In consequence of fixed label positions, every street label
is permanently located at the middle of its street segment.
A usual practice of street label placement is the projection
of the labels onto the streets to increase the label-feature
association. But to achieve this, the letter placement needs
to be performed in world-space. The constant size of area
labels turns out to be handy because the labels are never
over- or under-dimensioned and are always easily read-
able. To get such a constant label size also for world-space
placement, a scale factor is used, to resize letters according
the current zoom factor. The field of view and the distance
between the label and the camera is taken into account to
get an appropriate scale factor. This factor enables a nearly
constant label size with respect to the screen and thus fa-
cilitates better label readability. The letter placement starts
at the label position, which is the red point in Figure 2b.
Then moving along the line by the same glyph advance
procedure as for the area labels. During the letter place-
ment, one additional process of improvement is done. The
averaging of letter positions reduces heavily bended labels
which creates a more connected label appearance and a
smoother label course. The letters are averaged by set-
ting the letter positions to the center of their predecessor
and successor. After this step, the spaces between these
letter positions do not comply with the associated glyph
advances. To correct them, the positions are shifted to-
wards their neighbor position accordingly. This averaging
procedure is done for all letters with two neighbors. Since
heavily bended labels are hardly readable and visually less
appealing, a label is not rendered if the angle between its
averaged letter positions exceeds a certain maximum.
The determined label and letter positions facilitate the ex-
ecution of visibility tests in the next step.

5 Visibility Tests

In the previous step, labels and their letters are assigned to
a certain position. If all of them were rendered, the result
would be an overloaded scene with worse label readabil-
ity and labels covering important information. To avoid
this scenario, intersection tests are implemented to deter-
mine if a label is overlapping with others. Since the la-
bels are rendered by descending importance and ascending
distance to camera, only a less or equally important label
could occlude another label. When a label overlaps with
another, it is not rendered. If the importance values are
equal, the distance to the camera plays the decisive role.
For more efficiency, the intersection tests are split into
three stages. The first stage represents a search grid, which
enables intersection tests only with labels in the same re-
gion. These regions are cells in a grid covering the entire
domain. Only labels which are lying in the same cell as

the current label are possible intersection candidates. The
cell access is easy and fast and the search grid avoids a lot
of unnecessary intersection tests.
The second and third stages are the intersection test itself
with two different kinds of bounding boxes which differ in
their level of detail. After the first step, all possible inter-
section candidates need to be tested for overlap with the
current label. At first, this is performed with axis-aligned
label bounding boxes. These bounding boxes enclose all
letters of a label and are only defined by four vertices. This
makes them simple and fast, but inaccurate. The area cov-
ered by this kind of bounding box may be much larger than
the label really needs, since it is always an axis-aligned
rectangle. By only using the label bounding boxes, there
would be many false-positive intersections. Therefore, we
use a second kind of bounding box for intersection testing,
which is only performed if the first bounding boxes are in-
tersecting. The individual letter bounding boxes are used
to test for overlap of single letters. This is more precise,
but needs more execution time because it has to be per-
formed for each letter. If this last intersection test detects
an intersection, the current label is not rendered.

Figure 3: Fading out the label ”Bischofsgartenstraße” be-
cause it is running out of space.

The abrupt change of label status from visible to invis-
ible and vice versa triggers label flickering. Therefore, a
smooth fade-in or fade-out is performed by lowering or in-
creasing label transparency on certain cases. It is possible
to predict if a street label is running out of space on a street
segment because it may be located at the boundaries of its
street segment. Then the transparency is gradually reduced
according to the remaining space. In Figure 3, one can see
the label ”Bischofsgartenstraße” fading out, caused by the
short space remaining of its corresponding street segment.
We already discussed that labels which are far away are
less interesting for the viewer than near labels. Due to this
fact, we aim to make labels far away disappear. This in-
creases the possibility that labels which belong to streets,
places and other landmarks near the viewer are visible. To
also avoid flickering in this case, they are faded in and out
like labels which are running out of space.
Until now, we have only discussed intersections between
labels, but a usual scene in Visdom includes many differ-
ent objects like buildings, protection lines, trees and moun-
tains, which also influence the label visibility of street la-
bels. Area labels are rendered floating above everything
else, therefore we do not need to consider occlusion by

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



other objects. It is difficult to deliver a realistic depth per-
ception and make street labels visible through other ob-
jects at the same time. For perspective views, we decided
to preserve the depth information for close street labels
and give it up on growing distance. Labels have constant
size with respect to the screen, but other objects have con-
stant size with respect to the 3D world and they are get-
ting very small if they are far away. Then their detailed
visual information is no longer detectable. Therefore, it
is less irritating that the labels are visible through occlud-
ing objects if they are far away. In the case of orthographic
views, the depth of buildings and other objects, which may
hide street labels, is hardly perceptible by the user. Thus,
the annotations are always visible through them without
destroying the 3D perception. The visibility tests deter-
mine the labels passed to the last step of the annotation
process to finally render them.

6 Rendering

Figure 4: Overview of internal structure and information
flow (gray arrows) of the render process.

The last step of the annotation process is the rendering
of all labels which passed the visibility tests. The orange
arrow in Figure 4 visualizes the invocation of the Renderer
class by the logic of Visdom to start a new render pass in
each frame. When the Renderer becomes active, it starts
the annotation render process with the data received by
the Resource class which manages the label data. These
data have different sources and attributes. The data de-
livered by OpenStreetMap [10] are constant at run-time
and the glyph metrics extracted from a given font do not
change either. Therefore these data represent the static
part of the data managed by the Resource. The user set-
tings represent the dynamic data because the values can be
modified by the user during execution. If the user changes
them, the Resource updates all dependent resources and
provides the refreshed data for the Renderer. If there are
no changes made by the user, the default font is the Google
font Roboto [11], which has a special design to make label
text more legible even with a small point size. To increase
the contrast between labels and their background and to
further improve their readability, outlines are added to the
letters. The size and color information of a label indicate
the label relevance for the user. The outline color is cho-
sen as white or black, depending on which color gives the
highest monochrome contrast to the font color. The default

font is bold to balance the ratio between the label letters
and their outline and to improve annotation text legibility.

Figure 5: Occlusion issue with standard depth test (a) and
desired behavior with modified depth test (b).

According the current view, the Renderer uses the up-
dated resource data for the label and letter placement and
for the execution of visibility tests. After these steps, it
passes label texts, letter positions, scale factors and the
glyph metrics to the geometry shader to span the quad for
every letter. This is done on the GPU to save important
runtime. At this point, every character has only one po-
sition and the geometry shader uses the glyph metrics to
calculate four vertices out of this one. But since there is
only one real point in the 3D world of Visdom, there is
also only one depth value. For area labels this does not
matter, since they do not need a precise depth value be-
cause they are not depth tested with the rest of the scene.
This is due to the fact that area labels are floating above
everything else. But for street labels, the missing accu-
racy of depth values is a real problem. This one depth
value per character lies directly on the street line and if
the current view plane is not exactly parallel to the line,
the four generated vertices out of this one appear wrong
and are sometimes occluded by the terrain (see Figure 5a).
To avoid such depth errors, the OpenGL integrated depth
testing is disabled and an own depth test is performed in
the fragment shader. The result of the own depth test im-
plementation is shown in Figure 5b. This test uses a depth
offset which complies with the letter height which is the
maximum depth error. If the letter depth with this offset is
closer than the rest of the 3D environment, the letter will
be drawn. The Renderer passes color information and tex-
ture atlases of the characters and their outlines to the frag-
ment shader. Afterwards, the fragment shader is able to
finally draw the label characters to the global frame buffer
of the Visdom scene.

7 Results

The described annotation process of the last sections is im-
plemented with the use of the graphics API OpenGL and
the programming language C++. All fonts of the annota-
tions in Visdom are of the font format TrueType. It is a
common font format which stores font information by the
use of quadratic Bézier splines, which classifies it to the
group of vector graphic font formats. To access and handle
the font data provided by TrueType, the library FreeType
[7] is used. It eases the extraction of glyph metrics and the

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: The first case study (a) shows the annotations used in the mountainous environment of Tyrol. In Wachau (b) one
can see labels in narrow valleys and used for the Danube river. The Marchfeld case study (c) shows labels nestling up to
hills and used for dikes. The last case study (d) depicts an orthographic view of Florence with Italian labels.

rasterization of vector graphics to get appropriate bitmap
font data. If the used font does not provide hinting infor-
mation, FreeType offers auto-hinting to make text more
legible. But missing kerning information cannot be re-
placed and is therefore a strict requirement for the chosen
font.
We use different case studies to analyze the visual appear-
ance and behavior of the annotations in Visdom. There are
five flood management case studies, three of them are lo-
cated in Austria, one in Germany and one in Italy. They
differ in attributes such as landscape, amount and type of
label data and in the case of Italy, in language of anno-
tations. The case studies do not only consist of densely
populated cities but some also cover a wider range with
multiple cities and villages. Some also have hills, moun-
tains, rivers and dikes, where the annotations are applied
like in cities. These varied case studies offer the oppor-
tunity to see how the annotations act when the environ-
ment and the provided label data are changing. They ease
the analysis of the overall strengths and weaknesses of the
annotations. For this purpose, performance tests are exe-
cuted in the five case studies in different scenarios. These
scenarios cover different views, from orthographic to per-
spective side views and from high to low zoom levels.

7.1 Case studies

The fist case study is Cologne, in which the annotations
where initially implemented. There is a high amount of
label data to process which is a challenge for their dy-
namic real-time rendering. The terrain is relatively even
with only very low height. This fact improves the appear-
ance of street labels, because their individual letters are

Figure 7: Street labels dynamically adapt to the water sur-
face of the flood simulation to stay afloat.

not changing orientation heavily when adapting to the un-
derlying ground. In the Cologne case study, the annota-
tions are not only used for streets, buildings, places and
landmarks, but they are also applied to labeling protec-
tion barriers and sewer networks. In Figure 7 a small part
of Cologne is shown. One can see labels rising with the
flood, which enables their legibility during the entire flood
simulation, even in inundated areas.
The case study of HORA (= Natural Hazard Overview
& Risk Assessment Austria [1]) sticks out with the most
mountains and rivers in the valleys. The area of Tyrol
shown in Figure 6a is characterized by the mountains of
the Alps. The rivers are emphasized with light blue lines
for better river visibility during flooding. One can see that
the floating area labels are well-suited for city and vil-
lage labels in mountainous landscapes. But when labeling
rivers and streets on mountain slopes or sharp ridges, the
labels may be heavily bended and thus hardly readable or
disappear when reaching the maximum bend angle.
The use of the annotations in narrow valleys or on hills can
be observed in the case study of Wachau (see Figure 6b).
In addition, the Figure shows the annotation of the large
Danube river along its center line as well as the combina-

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



tion of labeling flat areas in the valley and uneven ground
on the hills. Compared to the HORA case study, the labels
are disappearing less often since the hills of Wachau do
not have such steep slopes as the mountains of Tyrol.
The dynamic adaption of the label orientation to make text
always readable from left to right is still correct on border-
line cases such as the almost vertical labels in Figure 6c.
The labels are still easy to read even if they nestle up to
gentle hills and bend along curvy streets. The Marchfeld
case study uses annotations also to label dikes.
The last of the five introduced case studies is Florence.
The annotations behave similarly to Cologne because they
are both cities with relatively even ground. Florence
has narrower streets and is populated more densely than
Cologne. Thus, there are more streets over the same area
and therefore more labels to process. Figure 6d shows the
labels of Florence in orthographic view where the modi-
fied depth test shows its positive effect. Using the stan-
dard depth test would result in partially hidden street la-
bels behind buildings. One can also see that the color-
coded buildings and terrain attract attention but the labels
are still clearly visible and legible.
An effect which is visible in all five case studies is that the
annotations are changing their level of detail according to
the zoom factor. This property is a positive side effect of
the implemented visibility tests and consideration of label
importance. When zooming out, labels which are less im-
portant are disappearing and give way to more important
labels. By zooming out, more labels are overlapping with
each other and only the labels with higher relevance have
the privilege to be rendered. When zooming in, fewer la-
bels are overlapping and less important labels get enough
space and become visible.

7.2 Performance Tests

In this section, the results of performance tests on the in-
troduced case studies are presented. The tests were exe-
cuted on a computer with 32 GB RAM and Intel Core i5-
4690K CPU with 4x 3.50 GHz and with a Nvidia Geforce
GTX 980 graphic card with 4 GB. The tests are separated
into the two categories update and render duration. The
update process is executed only on the CPU. By count-
ing CPU cycles, the elapsed time is measured. For the
update tests, only the initial update process involving the
entire data set is considered because later updates are only
processing subsets of the data. The render duration takes
into account the time needed for the placement, the visi-
bility tests and the rendering itself. These processes are
performed on both CPU and GPU. The elapsed GPU time
is measured with a pipeline statistics query exposed by the
OpenGL API.

The distribution of shapes over all case studies is visu-
alized in Figure 8 (right). Wachau is the only case study
which has more polygons than lines. In all other case stud-
ies, line data dominate, which require more line merges
during the initial update process. The number of lines and

Figure 8: The time needed to update all label data (left)
and the distribution of shapes (right), both per case study.

the update time are strongly correlated. For the case study
of Cologne, OpenStreetMap provides the most label and
shape data of all case studies. In Figure 8 one can see,
that the initial preprocessing of all label data of the largest
case study with over 70,000 shapes (right) is faster than
one second (left).

Figure 9: The average time needed for one render pass per
case study (left). The number of street and area labels and
the total number of labels per case study (right).

The average time needed to render these labels is visu-
alized in Figure 9 (left). The number of labels rendered
lies between 20 and 30 labels on average. Since the most
labels are rendered in the case study of Florence and the
least in Marchfeld, they have the longest and shortest av-
erage render duration. In Figure 9 (right) the number of
labels after the update process is shown. Compared with 8
(right) there are far less labels than shapes because labels
with invalid text are discarded and street labels merged.
Focusing on the Cologne case study, the processing of over
10,000 labels and the rendering of labels passing the visi-
bility tests took 7.71 ms. These results show that all case
studies can be rendered at highly interactive frame rates
and that the annotations allow fluent dynamic real-time in-
teraction with Visdom.

8 Summary & Future Work

This paper covers the implementation of annotations for an
interactive 3D application. Two different label approaches
for line and area labels facilitate an object-specific label-
ing, which enables a direct label-feature association with-
out additional objects. The dynamic adaption of the la-
bel orientation to user interaction and changing views in-
creases the label legibility. Through the implemented oc-
clusion handling, the depth perception in close-up views
is preserved and in far-away views the labels are still read-
able. The annotations provide continuous levels of detail,
whereby the label visibility depends on the label impor-
tance and the zoom level. The scaling according to the

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



zoom level fixates the label size relative to the screen and
preserves label legibility. The implementation supports
processing large quantities of labels in real time and with
a fluent user interaction. The use of fixed label positions
speeds up the placement process because only the individ-
ual letters need to be placed dynamically and not the whole
label. The preparation of all data which are not changing
permanently is also saving important runtime. The three
step visibility tests with the search grid and label and letter
bounding boxes represent a further performance improve-
ment. Finally, the GPU-side vertex calculation of the label
letters enables the use of only one position per letter for
CPU processing which also contributes to the high inter-
activity. Thus, the implementation fulfills all measurable
initial requirements.
The different case studies demonstrate that the annotations
are applicable to different scenarios. But there are some
known issues. The street line merge process does not re-
liably detect all crossings and junctions to provide an op-
timal label-street association. The problem of one depth
value per letter causes imprecise depth tests with the envi-
ronment which can lead to labels partially sinking into the
ground or labels visible in front of objects which should
cover them. This behavior is only appearing in very spe-
cial cases such as a highly uneven terrain. As a result of
the fixed label positions, the labels are often truncated or
not visible even if their feature is. This is noticeable espe-
cially in the case of long streets with only one label. We
consider a more flexible, but temporally stable label place-
ment for very long streets an important direction for future
work.

9 Acknowledgments

I would like to thank my supervisors Jürgen Waser and
Daniel Cornel for the good cooperation, the great sup-
port and their patience. This work was enabled by the
Competence Centre VRVis. VRVis is funded by BMVIT,
BMWFW, Styria, SFG and Vienna Business Agency in
the scope of COMET – Competence Centers for Excellent
Technologies (854174) which is managed by FFG.

References

[1] Bundesministerium für Nachhaltigkeit und Turis-
mus. Natural Hazard Overview & Risk Assessment
Austria. http://www.hora.gv.at, 2018. Ac-
cessed: 2018-01-15.

[2] Steven Van Dijk, Marc Van Kreveld, Tycho Strijk,
and Alexander Wolff. Towards an evaluation of
quality for names placement methods. Interna-
tional Journal of Geographical Information Science,
16(7):641–661, 2002.

[3] Dietmar Ebner, Gunnar W. Klau, and René
Weiskircher. Force-Based Label Number Maxima-
tion. Technical report, Vienna University of Technol-
ogy, Institute of Computer Graphics and Algorithms,
2003.

[4] Geofabrik GmbH. Maps & Data. http://www.
geofabrik.de/data, 2017. Accessed: 2017-
10-27.

[5] Chris Green. Improved Alpha-tested Magnification
for Vector Textures and Special Effects. In ACM SIG-
GRAPH 2007 courses, pages 9–18, 2007.

[6] Stefan Gustavson. 2D Shape Rendering by Distance
Fields. In OpenGL Insights: OpenGL, OpenGL ES,
and WebGL community experiences, pages 173–182.
CRC Press, 2012.

[7] Werner Lemberg. FreeType Overview. https:
//www.freetype.org/freetype2/docs,
2017. Accessed: 2017-11-27.

[8] Stefan Maass and Jürgen Döllner. Embedded Labels
for Line Features in Interactive 3D Virtual Environ-
ments. In Proceedings of the 5th International Con-
ference on Computer Graphics, Virtual Reality, Vi-
sualisation and Interaction in Africa, pages 53–59,
2007.

[9] Joe Marks and Stuart Shieber. The Computa-
tional Complexity of Cartographic Label Placement.
Technical report, Harvard Computer Science Group,
1991.

[10] OpenStreetMap Contributors. OpenStreetMap.
https://www.openstreetmap.org, 2017.
Accessed: 2017-10-23.

[11] Christian Robertson. Google Fonts Roboto. https:
//fonts.google.com/specimen/Roboto,
2018. Accessed: 2018-01-15.

[12] Nadine Schwartges, Jan-Henrik Haunert, Alexander
Wolff, and Dennis Zwiebler. Point Labeling with
Sliding Labels in Interactive Maps. In Connecting a
Digital Europe Through Location and Place, pages
295–310. Springer International Publishing, 2014.

[13] Mikael Vaaraniemi, Martin Freidank, and Rüdiger
Westermann. Enhancing the Visibility of Labels in
3D Navigation Maps. In Progress and New Trends in
3D Geoinformation Sciences, pages 23–40. Springer
Berlin Heidelberg, 2013.

[14] Mikael Vaaraniemi, Marc Treib, and Rüdiger West-
ermann. Temporally Coherent Real-time Labeling of
Dynamic Scenes. In Proceedings of the 3rd Interna-
tional Conference on Computing for Geospatial Re-
search and Applications, pages 17:1–17:10, 2012.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)


