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Abstract

Digital photography has become widespread with the
global use of smartphones. However, most of the captured
images do not fully use the camera capabilities and only
store the captured photos in a format with limited dynamic
range.

Recently several new dynamic range reconstruction
methods using convolutional neural networks (CNNs)
were published and their performance has not yet been
comprehensively compared.

In this paper we present a framework for comparing
dynamic range reconstruction approaches and use it to
compare the reconstruction quality of the recently pub-
lished CNN-based approaches. We also implement a mo-
bile HDR camera application and evaluate the feasibility
of running the best-performing reconstruction method di-
rectly on a mobile device.

Keywords: high dynamic range, inverse tone mapping,
deep learning, mobile application development

1 Introduction

Digital cameras have become ubiquitous during the past
few years, yet the majority of taken photographs do not
fully use the camera capabilities. While the resolution and
color accuracy reproduction have been improving, the cap-
tured image brightness still lacks the dynamic range of
the original scene. Apart from physical sensor sensitiv-
ity and saturation limits, further dynamic range reduction
is caused by the camera software usually storing the cap-
tured photo in a lossy 8-bit format such as JPEG File In-
terchange Format.

Recently several advanced approaches for HDR image
reconstruction from a single exposure LDR image have
been published ([6], [7], [26], [13] and [16]). These ap-
proaches use deep convolutional neural network to esti-
mate the image areas, which were distorted when captur-
ing the LDR photo. The relative performance of these ap-
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proaches is unknown and suitability for practical applica-
tions needs to be evaluated.

The main contributions of this paper are:

1. A framework for comparing dynamic range recon-
struction approaches, which take a single LDR image
as an input.

2. A comparison of recently published CNN-based dy-
namic range reconstruction approaches.

3. Evaluation of feasibility of running inference using a
large neural network on a mobile device.

4. Adaptation of HDR capture image processing
pipeline to include a dynamic range reconstruction
step.

5. An open-source implementation of a smartphone
HDR camera application.

2 Background and Related work

2.1 HDR and dynamic range reconstruction

High dynamic range (or HDR) images contain more per-
pixel information – usually the incoming luminance is
stored in a floating-point number. This additional in-
formation can be used in image post-production allow-
ing exposure fine-tuning or emphasizing details in shad-
owy areas, and even for viewing as HDR displays become
widely available. Apart from normal photography produc-
ing “framed rectangle” images, the need for HDR images
extends to spherical panoramas, which capture the whole
360deg of azimuth and 180deg of elevation, used as envi-
ronment maps for computer games or image-based light-
ing for offline rendering.

The HDR to LDR transformation, also called tone map-
ping (TM), performed by camera software loses image
data by reducing the range and precision of pixel val-
ues, therefore there is no “correct” inverse transformation.
There are approaches to approximate the original lumi-
nance values, essentially attempting to find an inverse TM
function or attempting to recover lost details. Dynamic
range reconstruction methods can be grouped into follow-
ing categories: image-based and machine-learning-based.
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2.2 Image-based methods

Image-based dynamic range expansion methods make as-
sumptions about the original per-pixel TM function or use
heuristics when attempting to invert the TM function.

Global expansion methods do not attempt to reconstruct
any missing data, they only expand the luminance range
by applying a spatially constant TM function. A sim-
ple global dynamic range expansion introduces/amplifies
banding or quantization artifacts, which some of the ap-
proaches try to reduce. Landis et al. [10] expand the dy-
namic range using exponentiation: raising luminance val-
ues in selected range to a constant power. Akyüz et al. [2]
γ-correct the pixel values then linearly scale them to match
the required output range – Masia et al. [14] show this ap-
proach yields good results when correct γ is used and pro-
pose an automatic method to find such a value. Meylan
et al. [15] present a piecewise linear mapping function to
achieve greater expansion of specular highlights and blur
the image around the highlights to reduce the amplified
non-linearity artifacts caused by an original TM function.

Local expansion methods assume a spatially varying
TM function, whose parameters change based on pixel val-
ues of the input image to preserve contrast in both high-
lights and shadows, e.g. the TM function by Reinhard
et al. [17]. Banterle et al. [3] boost highlights by us-
ing density estimation of high-value pixels as interpola-
tion weights between the original image and an image ex-
panded using a global method. Rempel et al. [18] aim to
prevent highlights “bleeding” over steep gradients intro-
duced by the previous approach – an edge stopping func-
tion and flood-fill algorithm is used to preserve borders
of the “near-saturated” areas, which need to be expanded.
Huo et al. [8] propose to model human retina response,
locally adapting to a certain luminance level and perceiv-
ing values in limited range around this level, and invert the
modeled function.

Clipping-aware reconstruction methods are another
family of HDR reconstruction methods, which detect
clipped (over- or underexposed) areas and attempt to gen-
erate plausible contents. Wang et al. [23] use inpainting to
replace clipped areas with patches from the input image.
While this method convincingly restores lost details, it re-
quires manual annotation to select areas to use as source of
the texture. Jain et al. [9] and Savoy et al. [21] use Internet
image retrieval to find similar images, which are then used
for inpainting the clipped areas. Rouf et al. [20] attempt
to recover lost color information in highlights caused by
pixel value saturation in individual color channels. The
hue and luminance gradient of the clipped area are extrap-
olated from the un-clipped border of the clipped region.

2.3 Machine-learning-based methods

Recently published machine learning-based approaches
use deep convolutional neural networks (or CNNs) to learn
the inverse TM function and to generate details in the

clipped areas. CNNs are able to learn to recognize high-
level objects in images, which can be internally used for
estimating relative luminance of objects, e.g. when an ob-
ject is classified as a light source such as the Sun or a street
lamp, the luminance can be estimated accordingly.

HDRCNN by Eilertsen et al. [6] uses an encoder-
decoder network to hallucinate details in over-exposed
parts of the image. The encoder consists of convolutional
layers from the VGG-16 architecture [22], a then-state-of-
the-art classification CNN. By using a verified working,
already pre-trained network as a part of the network archi-
tecture, only the decoder weights need to be fully trained.
To reduce the amount of information the network needs to
learn, only the saturated areas in the input image are re-
constructed, keeping the well-exposed pixels unmodified.

DrTMO by Endo et al. [7] aims to recover the inverse
tone mapping of an image, reconstructing lost details in
both highlights and shadows, by using an encoder-decoder
architecture. To make training of the network feasible, the
network outputs only 8-bit images, predicting increased
and decreased exposures of the input image. The resulting
HDR image is produced by merging these outputs.

Zhang et al. [26] use an encoder-decoder-based net-
work to increase the dynamic range of an outdoor spheri-
cal panorama and to recover the elevation of the Sun from
the latent representation. The Sun is expected to be located
horizontally in the center of the input image. As the net-
work outputs an HDR image, increasing the complexity of
the training, the authors opted to limit the size of the net-
work by fixing the resolution to 128 x 64 pixels, making it
unsuitable for high-resolution HDR image reconstruction.

Marnerides et al. [13] attempt to avoid occasional
checkerboard artifacts caused by “deconvolution” layers
used in the up-scaling decoding stage in encoder-decoder-
based networks. The authors propose the ExpandNet net-
work architecture without any up-scaling steps – a custom
multiscale CNN with 3 branches, each focusing on specific
level of detail, which are then merged producing an HDR
image. The authors claim this approach handles large
clipped areas better than other CNN-based dynamic range
reconstruction approaches, producing fewer artifacts.

Ning et al. [16] aim to solve the issue of limited avail-
ability of HDR images1 by using a generative adversarial
network, which can be trained on LDR images. The archi-
tecture consists of two networks trained simultaneously:
an inverse tone mapping network and a discriminator net-
work evaluating the reconstruction quality by distinguish-
ing generated HDR images from real HDR images.

2.4 LDR-to-HDR reconstruction evaluation

There are comparisons of the machine-learning-based re-
construction approaches with traditional dynamic range
expansion methods in the ML-based approaches’ papers

1needed for supervised learning: training on LDR-HDR image pairs,
as used in previous approaches
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([6], [7], [26], [13] and [16]) showing superior results of
the proposed methods. Two of the papers also compare the
proposed network model with previously published ML-
based reconstruction methods ([13] and [16]). However,
none of the comparisons include all the approaches and a
numeric evaluation on a larger dataset.

3 HDR reconstruction evaluation
framework

The goal of the evaluation framework is to compare the
relative reconstruction quality of several dynamic range
reconstruction algorithms, which take a single LDR im-
age as their input. The framework should take one or
more HDR images – equirectangular-projected spherical
panoramas and output error metric results for each in-
put image and each reconstruction approach, needed for
numeric comparison. Furthermore it should provide a
graphical representation of reconstruction accuracy to sim-
plify visual detection of systematic errors in reconstruction
methods’ outputs, and should provide a way to easily com-
pare the reconstructed output images to other reconstruc-
tions of the same image and to the original HDR image.
The proposed evaluation process consists of the stages de-
scribed in the following paragraphs.

The aim of the Import stage is to convert the input HDR
image into a common format and resolution. The resolu-
tion of the input images is unified by resampling them to
prevent unfair error metric results caused by different im-
age pixel counts.

The Degrade stage simulates dynamic range and lumi-
nance precision degradation by converting the input im-
age into a lossy LDR format. The JPEG compression and
sRGB color space is used, as it represents the majority of
taken photos. The compression quality (DCT coefficient
pre-quantization multiplier) is set to maximum to reduce
the compression artifacts effect on the evaluation metrics.

The Reconstruct stage handles dynamic range recon-
struction by running each reconstruction algorithm on a
degraded image. Along with each reconstruction result,
a non-reconstructed image is passed to the next stage to
serve as a baseline for metrics evaluation.

The Evaluate stage compares the reconstruction result
to the ground truth image by computing error metrics and
generates luminance and color mapping plots.

To measure the similarity of two HDR images we need
to define a set of metrics to use. We use two error met-
rics: SSIM [24] to measure loss of local texture details and
RMSE to measure non-perceptual difference. The HDR-
VDP-2 metric by Mantiuk et al. [12], used in some of the
ML-based approaches’ papers, is the appropriate similar-
ity metric, because it computes perceptual quality differ-
ence of HDR images. However using the provided im-
plementation would require us to use proprietary Matlab
software, limiting the framework portability and results

reproducibility. As we have not found an independent im-
plementation of the metric, we decided not to include the
metric in the evaluation but rather to design the framework
to make adding new metrics easy.

Apart from numeric evaluation of reconstruction results,
two graphs representing luminance and color transforma-
tion are generated. A luminance mapping plot is a scat-
ter plot showing the dependency of reconstructed per-pixel
luminance on the the ground truth luminance (each pixel
is drawn as a dot at corresponding position). Along with
the image data, a function f (x) = x is plotted to help spot
any non-linearity of the reconstruction algorithm – an op-
timal reconstruction algorithm should produce points only
on this line. Similarly by drawing each color channel sep-
arately instead of combining the color channel values into
luminance, drawing red, green and blue dot for each pixel,
a color mapping plot is generated. It shows the distortion
of individual color channels allowing the user to inspect
whether reconstruction errors are color-dependent. These
plots may help the user spot any global pixel value distor-
tion or e.g. in a specific case of a photo of a landscape, the
color mapping plot may help discriminate whether a re-
construction algorithm fails to recover the dynamic range
in the sky or grass area. An example of the mapping graphs
is shown in Figure 4 in the Results section.

In the Render stage the reconstructed HDR image from
the previous stage is used as an environment map when
rendering a simple 3D scene using pbrt by Pharr et al. [1]
to visualize the effects of using the reconstructed image
for image-based lighting and to find potential disconti-
nuities at the spherical panorama image edges. The 3D
scene consists of three glossy spheres with different sur-
face roughness placed on a checkerboard-textured plane.
The scene rendering is depicted in Figure 1. High intensity
light sources, which occupy a small area on the environ-
ment map image, such as Sun, cause crisper shadows and
larger highlights on glossy surfaces. The relative inten-
sity of such sources can therefore be estimated by visually
inspecting the size of the highlights. Comparing the ren-
dering outputs (at a fixed exposure level) produced from
a reconstructed image and the corresponding ground truth
image can be used to assess the quality of the reconstruc-
tion algorithm. The scene is rendered and stored with high
dynamic range to allow simulation of different exposures
when viewing.

Figure 1: Rendering of the testing scene using the recon-
structed image applied as an environment map for image-
based lighting.
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The View stage prepares a user-viewable version of the
visual reconstruction results along with the ground truth
image for comparison. The user can set an exposure value
and switch between images (individual reconstructions
and the ground truth image). Switching between images
maintains the exposure value allowing the user to com-
pare specific parts of the image. The HDR image viewer
is based on PFSTools by Mantiuk et al. [11] is based on
web technologies (HTML5 and JavaScript/ECMAScript)
for platform independence and simple result publication.

Finally the numeric evaluation results are presented to
the user. A web-page is generated containing an interac-
tive table containing numeric evaluation results along with
links to open the HDR image viewer with a given set of
images and color/luminance mapping graphs. The table al-
lows sorting2 by clicking on a column header; secondary
sorting criteria can be set by holding the shift key when
clicking a header. This allows the user to quickly find best
and worst reconstruction results, which can be inspected in
more detail. Multi-criteria sorting simplifies the process of
finding the ranking of individual reconstruction algorithms
by choosing the Ground truth image column as a primary
key and an error metric as a secondary key.

4 HDR camera application

We have created a camera application, which is able to
capture the highest possible dynamic range of a scene and
evaluated the feasibility of recovering details that could
not be captured. The application can capture a set of
HDR images with the same exposure parameters suitable
for stitching to produce a spherical panorama usable for
image-based lighting used in rendering.

The dynamic range of an image is limited by the sensor
sensitivity and saturation and by the storage format, which
can be overcome by bracketing – taking multiple LDR im-
ages of the same scene with different settings to capture
details in both highlights and shadows. Dedicated cam-
eras usually allow manual setting of exposure time, ISO
(sensitivity) and aperture. In case of smartphone cameras
the aperture is fixed. Bracketed photos can be merged
by linearization3, multiplication by their individual ex-
posures and computing the weighted average prioritizing
well-exposed pixel values. The process is described by
Debevec et al. [4] or Robertson et al. [19] along with
an algorithm to find the inverse camera response function.
Dynamic range can be further improved beyond the phys-
ical sensor limits (e.g. the shortest exposure time and the
lowest supported ISO) by hallucinating the clipped pix-
els using a CNN-based approach. Apple iOS was chosen
as the target platform because of author’s previous expe-
rience with development for this platform, lower number
of different devices to support and because the author al-
ready owned a compatible smartphone. The application

2http://tablesorter.com/docs/
3applying inverse camera response function

has been developed and tested on an iPhone SE with the
iOS 10.2 operating system installed. The device has a dual
core CPU clocked at 1.8 GHz and 2 GiB of RAM and a
back camera4 with 4032-by-3024 pixels sensor with sup-
ported exposure time range 0.000013 s – 0.333333 s and
ISO range 23 – 1840. The camera API offers two modes
of operation influencing what kind of exposure parameters
is used: “Auto” mode5, where the application specifies the
requested list of EV offsets from the automatically deter-
mined +0 EV level, and “Manual” mode6, which takes list
of arbitrary (ISO, exposure time) tuples.

HDR images can be captured using various camera ap-
plications. Although some applications on both iOS and
Android support taking an “HDR” image using multiple
exposures, the software usually stores the merged image
tone-mapped in an LDR format. This is the case of the
built-in camera application, which automatically activates
the “HDR” mode if the scene dynamic range significantly
exceeds the sensor limits. True HDR images can be cap-
tured using third-party camera applications available in the
App Store that allow manual exposure parameters settings
(e.g. Musemage), automatic exposure bracketing (Pro-
Cam) or bracketed capture with integrated merging of the
bracketed photos (Adobe Lightroom CC). Adobe Light-
room CC takes 3 RAW photos with different exposures,
merges them and saves the result to a 32-bit DNG file7.
However, all found applications are closed-source so they
can not be modified to incorporate a dynamic range recon-
struction step into the pipeline.

4.1 HDR reconstruction approach selection

The most important criterion when choosing an HDR re-
construction approach was the performance and capabil-
ities of each approach. As shown below in the Results
section, HDRCNN is the best-performing of the compared
networks. However, as it only restores clipped highlights
without modifying the un-saturated areas with shadows,
DrTMO and ExpandNET also need to be considered.

The implementations of the DrTMO and ExpandNet
CNNs use the Chainer neural network framework and Py-
Torch, respectively and are not compatible with iOS, re-
quiring network model conversion to a supported frame-
work such as CoreML8, leaving TensorFlow-based HDR-
CNN the only option. We exported the HDRCNN model
for use in a natively-compiled application with network

4Camera specifications: https://developer.apple.com/
library/archive/documentation/DeviceInformation/
Reference/iOSDeviceCompatibility/Cameras/
Cameras.html#//apple_ref/doc/uid/TP40013599-
CH107-SW26

5AVCaptureAutoExposureBracketedStillImageSettings
6AVCaptureManualExposureBracketedStillImageSettings
7http://blogs.adobe.com/lightroomjournal/2017/

03/lr-mobile-update-raw-hdr-capture-mode-for-
ios-and-android.html\#comment-216145

8https://developer.apple.com/documentation/
coreml
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inputs and outputs mapping being the only modification.
System requirements need to be also considered due to

limited memory and processing power of mobile devices.
Both ExpandNet and DrTMO have higher memory foot-
print than HDRCNN9. This would require modifications
to the network architectures10 to reduce the requirements.
Because of these reasons we selected HDRCNN as the
most applicable approach.

As running the inference on the full-resolution image
on the mobile device is infeasible11, we reduced the in-
ference resolution by splitting the image into tiles of 320
by 320 pixels, reducing the memory consumption to ap-
prox. 750 MiB, each tile inference taking approx. 2.5 s.
The inference of the image split into tiles takes approx. 5
minutes, making it a non-interactive process, however, as
only a few tiles usually contain clipped pixels, the rest can
be skipped. The remaining drawbacks can be fixed12 in
future development of the application.

4.2 Capture pipeline

The HDR capture pipeline is based on the “Stack-Based
Algorithms for HDR Capture and Reconstruction” chapter
from a book by Dufaux et al. [5] adapted to fit the use-case
of a mobile application, which simplifies taking environ-
ment maps, with an added dynamic range reconstruction
step. The pipeline phases and data passed between indi-
vidual phases are outlined in the Figure 2.

The aim of the Metering phase is to find parameters of
the base exposure, where most of the pixels values are not
clipped and optionally to measure the dynamic range of
the scene. In our application the base exposure parameters
can be found automatically13 or set by the user when set-
ting the number of down-/up-exposure steps and the EV
step size, describing the dynamic range of the scene.

The Exposure preparation phase generates a set of ex-
posure parameters to capture, covering the requested dy-
namic range. The exposure time and ISO are dependent on
each other in a way, that when the exposure time is divided
by n, ISO needs to be multiplied by n to keep the same ex-
posure value. Increasing the EV by 1 can be achieved by
doubling the exposure time or ISO.

We use the “Manual” mode for capturing images so we
can reuse parameters for multiple shoots14. In addition
to the base exposure parameters we compute additional
(exposure time, ISO) tuples to capture the dynamic range

9DrTMO requies up to 13.48 GiB of RAM for the provided 1536-by-
1024 pixels image Forest.png.

10E.g. DrTMO may be modified to output less exposures at the same
time, needing the network evaluation to be run multiple times.

11HDRCNN uses more than 14 GiB of RAM for 4032x3024 images.
12Tiling artifacts can be removed by overlapping the tiles and interpo-

lating the inference results; speed can be improved by re-implementing
the model in a framework supporting GPU/TPU acceleration.

13We use the “Auto” mode to find base exposure parameters: we let
the system libraries find the “correct” exposure: take a metering image
with the “+0 EV” exposure then access the image metadata.

14This is crucial for stitching when taking panoramas.

requested by the user: up-exposure parameters are com-
puted by increasing time up to 1/17 s, then by increasing
the ISO15; for down-exposure we decrease the ISO until
reaching the lower limit to reduce the noise, then we de-
crease the exposure time.

The Capture phase captures the required exposures of
the scene, producing a set of images, also called a stack.

While the built-in camera supports RAW capture with
12-bit precision, we opted to use a pre-processed Y’CbCr
format with only 8-bit precision due to the simpler pro-
cessing16 and due to the fact dynamic range reconstruction
approaches accept 8-bit input images. This decision does
not limit the achievable dynamic range, it only increases
the required number of bracketed captures to achieve it.

The Image alignment phase compensates for camera
movement between captures of individual images. We
use the alignment approach by Ward et al. [25] assum-
ing translation is sufficient as the majority of hand-held
captured sequences do not require rotational alignment.

After image stack alignment the dynamic range re-
construction phase can occur. The easiest-to-implement
approach would be to execute the dynamic range recon-
struction remotely on a server to work around speed and
compatibility issues. However, there would be trade-offs
in form of hosting costs and relatively high bandwidth
requirements17 also impacting users of the application.
Therefore we decided to run the dynamic range recon-
struction directly on a mobile device.

First we need to determine the position of HDR re-
construction in the pipeline. The dynamic range can be
reconstructed either before or after merging individual ex-
posures. However, neither of these options is straightfor-
ward: as both the reconstruction and merging expect or
require LDR inputs, either needs to be adapted.

One option would be to merge the exposures first and
then feed the resulting HDR image into a neural network
for further dynamic range expansion. Although this ap-
proach may theoretically produce better results18, training
the CNN to process such inputs would be necessary.

The option we chose is to recover the clipped highlights
of the lowest-exposure-value image19 followed by merg-
ing the resulting image with the captured images to pro-
duce one HDR image using a modified merging algorithm.

In the Merge phase we merge the reconstructed HDR
image with LDR images captured with different expo-
sures. We have modified the merging algorithm by Robert-
son et al. [19] to also accept HDR inputs. The modification
consists of special handling of HDR inputs: we generate
multiple LDR images with simulated exposures covering

15matching the built-in Camera application behavior
16There is no need for debayering and white-balance steps.
17Upload LDR: ˜2-5 MB (lossy JPEG LDR image), download HDR:

˜35-40 MB (Radiance HDR (RGBE) format, better compression may be
achieved with wavelet transform used by OpenEXR).

18The network would have access to the full captured dynamic range.
19essentially predicting even lower-exposure-value images, allowing

us to use the pre-trained model
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Figure 2: Schematic diagram of the HDR capture pipeline.

the input dynamic range, which are then merged without
applying the found inverse camera response function.20

Finally we Save the merged image. As the built-in
photo library is not suited for storing HDR images, we
store the captured photos in an application directory ac-
cessible from the computer using iTunes. We chose the
Radiance HDR (RGBE) image format21 for its compatibil-
ity and relatively compact data storage, while the encoding
not being too computationally demanding.

5 Results

5.1 Comparison of existing ML-based dy-
namic range reconstruction methods

Out of the five deep learning-based high dynamic range
reconstruction approaches referenced in the Related work
chapter only four approaches have a public implementa-
tion. As the neural network by Zhang et al. [26] only
supports low resolution inputs and outputs, making the
output images unsuitable for use as environment maps, it
was excluded from the evaluation. The remaining meth-
ods, which provide pre-trained neural networks and sup-
port high resolution images, are: HDRCNN [6], DrTMO
[7] and ExpandNET [13]. As the pre-trained models are
used, the reconstruction quality depends on the training
dataset size and image selection. This issue was disre-
garded due to too high computational demands to train all
the networks and may be addressed in a future work.

20The modified code is in the MergeRobertsonUnlimited repository.
21http://radsite.lbl.gov/radiance/refer/

filefmts.pdf

The evaluation dataset consists of HDR spherical
panoramas from the following sources: NoEmotion HDRs
– Dayhdr22 and HDRLabs sIBL Archive23. This set of
HDR images contains a combination of outdoor scenes
with direct sunlight and sky with and without clouds as
well as indoor images.

The high dynamic range reconstruction evaluation
framework was used to process (import, degrade, recon-
struct using each approach and compute error metrics for)
each image in the dataset to measure/compare the quality
of reconstruction methods.

We computed average metrics to get an aggregated
performance of individual dynamic range reconstruction
methods and to spot any global issue with the networks.
The results are shown in Table 1 with the best achieved
value for each metric highlighted in bold text.

The Average RMSE (unsaturated) of LDR (baseline) is
non-zero because of quantization of the HDR image24. All
reconstruction methods introduce an error to well-exposed
(unsaturated) pixels. HDRCNN is the only method, which
globally outperforms the baseline (both based on RMSE
and SSIM). The distortion is so large it negates any met-
ric value improvements caused by the dynamic range re-
construction. An example of the distortion is shown in
Figure 3. Before we proceed with further comparison, we
need to “linearize” the output of reconstruction methods.

Linearization transforms the reconstructed pixel val-
22http://noemotionhdrs.net/hdrday.html
23http://hdrlabs.com/sibl/archive.html
24The size of an 8-bit value step is 1/256 = 0.00390, because rounding

to the nearest value is used, the upper bound for per-pixel error is half
a step, which is 1/256/2 = 0.00195. The actual Average RMSE (unsat-
urated) is less, because not all pixel values are “exactly in the middle
between steps” – the values are likely uniformly distributed.
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Avg. Avg. Avg. Avg.
Method RMSE RMSE RMSE SSIM

(all) (saturated) (unsat.)

LDR 0.5533 2.2735 0.0014 0.9866
HDRCNN 0.4964 2.0438 0.0237 0.9885
DrTMO 0.6189 2.2613 0.1620 0.8249
ExpandNET 0.5986 2.4114 0.0771 0.9303

Table 1: Average metrics results: comparison of “raw” re-
construction methods (without linearization). LDR (base-
line) is the degraded image without any reconstruction.
RMSE is computed separately for all, only saturated, and
only unsaturated pixels.

Figure 3: Luminance mapping graph for the image Grav-
elPlaza REF, reconstructed by DrTMO (left) and HDR-
CNN (right), showing non-linearity artifacts.

ues to “straighten” the luminance mapping curve to fit the
f (x) = x line, based on the values in the [0,1] range in the
input LDR image, only affected by quantization. In case
of HDRCNN the distortion in the [0,1] range is constant,
caused by color space conversion25. Other approaches
(DrTMO and ExpandNet) vary the distortion between pic-
tures so we find regression parameters per-image. In case
of DrTMO, which outputs multiple LDR exposures, we
also calibrate camera response function for correct merg-
ing into a single HDR image.

The best-performing transformation function26 over the
dataset is f (x) = a · x, fixing the curve slope, i.e. correct-
ing the exposure. Although the luminance mapping curve
of DrTMO nor ExpandNet are linear, using other func-
tions introduced errors in other parts of the curve, yielding
sub-baseline results. The improved metrics values after
linearization are shown in the Table 2.

To compare the relative performance aggregated over
all test cases we computed average ranking results. As
seen in the Table 3, the HDRCNN approach performed the
best for both metrics. Although DrTMO and ExpandNet
RMSE rank is on average between second and third place,
beating the baseline, they yield significantly worse results

25HDRCNN expects linear LDR image input, while images in sRGB
color space are more common, thus used in the degrade step.

26See color mapping/fix mapping auto.py for the list of attempted
function fits

Figure 4: Luminance/color mapping graph showing a dis-
continuity artifact of the HDRCNN-reconstructed Narrow-
Path 3k image. The blue channel-sky is the most affected.

than HDRCNN. Based on the SSIM metric DrTMO and
ExpandNet rank on average worse than LDR (baseline),
meaning running no reconstruction at all yields better re-
sult. This is due to the pixel value distortion, although
improved by our imperfect linearization of the [0,1] area,
causing a loss of details.

Using the HDR reconstruction evaluation framework
we made following observations:

• All approaches managed to detect saturated areas and
increase the luminance values.

• All approaches have a problem with large saturated
areas, causing discontinuity in the luminance map-
ping graph, as shown in Figure 4.

• The first line of ExpandNet output image is almost
black, exhibiting as points along the x axis of the lu-
minance mapping plot. The issue has been reported
to the authors.

The best-performing dynamic range reconstruction ap-
proach is HDRCNN, leading in both error metrics, outper-
forming other reconstruction methods for the vast majority
of input images. The remaining two methods, while out-
performing the baseline in the RMSE metric, reduce the
SSIM metric results below the baseline level. HDRCNN
produces the lowest distortion in unsaturated areas, desir-
able for merging the image with other exposures in our
HDR camera application, as well as the best recovery of
clipped highlights.

Avg. Avg. Avg. Avg.
Method RMSE RMSE RMSE SSIM

(all) (saturated) (unsat.)

LDR 0.5533 2.2735 0.0014 0.9866
HDRCNN 0.5023 2.0741 0.0030 0.9933
DrTMO 0.5487 2.2709 0.0195 0.9800
ExpandNet 0.5437 2.2603 0.0252 0.9819

Table 2: Average metrics results for each metric and re-
construction approach after output linearization.
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Average AverageMethod
RMSE rank SSIM rank

LDR 3.3376 2.7532
HDRCNN 1.2337 1.0259
DrTMO 2.6493 2.9610
ExpandNet 2.7792 3.2597

Table 3: Average ranking of each reconstruction ap-
proach and metric, after output linearization.

5.2 HDR Camera Application

To compare our HDR camera application with other ex-
isting applications, we have captured a scene with high
dynamic range – an interior with a window on a sunny
day – using three applications: the built-in default Camera
application, Lightroom CC and our HDR camera applica-
tion27. The comparison of the captured images is shown
in Figure 5.

Frst row: default Camera application using “HDR” mode.
Second row: Lightroom CC in HDR mode. Third row:
the image produced by our HDR camera application.

Each row contains three columns with shifted exposure
values. From left to right: −5 EV , +0 EV and +3 EV .

Figure 5: Comparison of HDR camera applications.

27The HDR image produced by our HDR camera application was
exposure-shifted by −2 EV in order to match the brightness of other
applications’ +0 EV brightness level.

The default iPhone Camera application in “HDR” mode
captures only a tone-mapped LDR image lacking high-
lights in the −5 EV image. The captured dynamic range
is improved28 preserving some details in both highlights
and shadows – the window nor the interior is completely
clipped. The shadows contain noise visible on the wall be-
low the window when the exposure is shifted by +3 EV .

In comparison, Lightroom CC produces a true HDR im-
age. While Lightroom CC uses only 3 exposures, it man-
ages to sufficiently cover the dynamic range of the scene,
which is achieved thanks to the RAW image capture and
processing. There is, however, visible noise in the shad-
ows, observable in the +3 EV shifted exposure. This is
caused by the lack of higher-exposure-value captures.

The image produced with our HDR camera application
captures the whole dynamic range of the scene29. There
is color inaccuracy when compared to the other two appli-
cations. Our HDR application also suffers from different
exposure scaling reducing contrast. Both issues are prob-
ably caused by inaccurate camera response calibration.

Our HDR camera application is slower compared to the
default camera application. Capturing a single image takes
approximately 2 seconds due to merging being executed
even when there is only one exposure. Capturing 4 expo-
sures and merging them takes approximately 10 s. Opti-
mization is left as a future work.

6 Conclusions

We have designed and implemented a framework for
evaluating the reconstruction quality of multiple HDR
reconstruction algorithms and used it to compare three
recently published machine-learning-based HDR recon-
struction approaches.

We then ported the best-performing neural network to
a smartphone to evaluate its usability on a device with
limited computational power. Reconstruction of full-
resolution images is too computationally demanding for
a mobile device, but running the inference after splitting
the image to smaller tiles only on the parts which contain
saturated pixels is feasible. We have also created a mobile
camera application for capturing HDR images, fully using
the built-in camera dynamic range.

The HDR reconstruction framework and HDR camera
application source code is available online: https://
bitbucket.org/hdri/dp_root.

28compared to the “HDR” mode being disabled
29The lowest-exposure-value image contained no clipped highlights

and the highest-exposure-value contained no clipped shadows. This
means there would be no benefit in running the dynamic range recon-
struction algorithm on this scene. A scene with directly visible Sun,
specular reflections or caustics would benefit from expansion of dynamic
range beyond the capability of the camera sensor.
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