
mallumo: Framework for Real-Time Global Illumination

Matúš Talčı́k*

Áron Samuel Kovács†

Supervised by: Jan Čejka‡

Faculty of Informatics
Masaryk University

Czech Republic

Abstract

Fast computation of global illumination is one of the
most researched topics in computer graphics. This pa-
per presents a real-time computer graphics library called
mallumo, which achieves global illumination with voxel-
based cone tracing, and its components, namely support
for high dynamic range data stored in voxels, anisotropic
filtering of voxels, support for different cone distributions,
rendering of atmospheric effects, and a method for real-
time rendering of volumetric clouds. These components
are compared and benchmarked in various configurations.

Keywords: voxel-based, global illumination, atmo-
sphere, rendering, real-time

1 Introduction

Achieving photorealism is crucial in many industries such
as film effects, video games or architecture visualization.
The major component in making images photo-realistic is
the calculation of a set of effects known as global illumi-
nation (GI), such as specular and diffuse reflections, re-
fractions, and soft shadows. The computation of GI is a
widely known and studied problem and the most widely
used method to achieve the effects mentioned above is by
simulating light transport.

Correctly simulating light transport is a computationally
expensive operation, due to the recursive nature of render-
ing equation, so many alternative methods were developed
to approximate the desired result in various ways. Approx-
imations can be divided into two groups: offline, which
tries to stay close to physical correctness at the expense
of computational time, and real-time, which foregoes cor-
rectness to provide visually convincing results usable for
interactive use cases. The former group has seen steady
progress in the last decades, mostly using Monte Carlo
methods, and is widely used in the movie and architectural
visualization industries.

*matus.talcik@mail.muni.cz
†aron.kovacs@mail.muni.cz
‡xcejka2@fi.muni.cz

Most real-time solutions that emerged in the last decade
have seen very few applications, mainly because they still
require a relatively large portion of the graphics process-
ing unit’s (GPU) processing power while existing appli-
cations already utilize most of GPU’s power, not leaving
enough for GI computation. Each real-time GI algorithm
has a different trade-off regarding the quality or required
precomputation.

In this paper, we present our implementation of a cone
tracing method operating on voxel grid based on work of
Green and Crassin [6], which requires features found only
in recent GPU generations, for example, atomics, arbitrary
read and writes to textures, geometry shaders, and com-
pute shaders. These features allow the implementation to
run in real-time on current hardware, although they usu-
ally eliminate these methods as candidates for inclusion
in game engines, where support for web browsers, mobile
systems, or older computers is required.

In order to create realistic images, mallumo also con-
tains algorithms for rendering atmosphere and clouds. To
provide their realistic simulation in real-time interactive
applications, a great effort is spent to make them look con-
vincing, but in many cases, this effort falls short, and the
results may not be of desired quality. Fortunately, the lat-
est advances in hardware made it possible to render volu-
metric clouds in real-time. In mallumo, we procedurally
generate volumetric clouds, and implement atmospheric
effects such as the colour of the sky dependent on the posi-
tion of the sun, and transmittance of light in objects inside
the atmosphere and beyond the atmospheric boundary.

2 Related Work

There are many alternative approaches to computing
global illumination in real-time. Virtual points lights algo-
rithm introduced by Keller [12] computes many intersec-
tions of light rays which then all light the scene. This algo-
rithm requires a costly precomputation phase and is there-
fore suited only for static geometry. Reflective shadow
maps introduced by Dachsbacher [7] reuse shadow maps
as indirect illumination sources. This method needs to
importance sample the shadow maps to obtain real-time

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Examples of mallumo supported features: (Left-to-right) object with physically based materials and image
based lighting, sparse octagonal tree, graphical user interface.

speed which results in severe artefacts and not enough
samples for specular reflections. Forward light cuts in-
troduced by Laurent et al. [14] improves upon virtual
point lights, but supports only diffuse indirect illumina-
tion. Sparse radiance probes by Silvennoinen [22] is one
of the most recent approaches with results very close to
ground truth. However, it needs a very long precompu-
tation time and therefore supports only static geometry.
There is also a closed-source implementation of voxel-
based global illumination by NVIDIA [17].

Various models were created to simulate effects in the
atmosphere. Nishita et al. [15] precomputes values for
single scattering, but the second scattering is computed
dynamically for each sampling point along the view ray,
and thus determining single pixel value takes linear time
in respect to the number of sampling points. Preetham et
al. [20] precomputes the previous model for many view
directions, sun directions, and turbidity values, so it takes
constant time for each view ray but is limited to ground
view and the sun being above the horizon. Other alterna-
tives include Nishita et al. [16] or Haber et al. [10]

For clouds, prerendered or photographed skybox and
skydome[9] approaches are often chosen for their simplic-
ity, however, they only provide static clouds. If dynamic
clouds are desired, alternatives to voxel-based clouds are
e.g. clouds modelled from implicit volumes[8] which are
distorted by a perturbation function or are composed of
either particles or polygons[18].

Our research is based on bachelor theses [13, 23] which
contain detailed description of algorithms presented in this
paper.

3 mallumo

mallumo is a real-time rendering library written in the Rust
programming language. It provides a safe abstraction over
OpenGL to prevent most errors caused by incorrect us-
age of the API that are caught at compile time, which is
achieved by repurposing the Rust type system and own-
ership model for OpenGL constructs. The errors that can

not be caught in compile time, e.g. running out of GPU
memory, are detected during runtime and reported to the
user of this rendering library, in a way that makes it pos-
sible to react to them. The version of OpenGL used is 4.5
with support for only latest functions to reduce the driver
overhead.

The library uses physically-based materials to achieve
a photorealistic look. They are based on the microfacet
model with input values and terms aligned with those in
Unreal Engine 4 [11] and enhanced diffuse model by Bur-
ley [4]. Furthermore, mallumo supports high dynamic
range image based lighting to produce realistic specular
term for materials. A combination of physically based ma-
terials and image based lighting can be seen in the left part
of Figure 1.

The support for industry standard physically based ma-
terials allows loading any scene with all the materials and
textures using glTF 3D format. Deferred rendering is used
to reduce the number of calculations and serves as an in-
put to the calculation of voxel-based global illumination.
Shadows maps are implemented and are used for calcula-
tion of first bounce of light before the second bounce is
applied. They can optionally generate texture of world po-
sitions, not only depth information which is useful for in-
jecting the first bounce into the voxel structure. In order to
save memory consumption on voxel structure needed for
cone tracing a sparse octagonal tree is implemented, see
an example of such tree in the middle part of Figure 1.

Furthermore, mallumo supports postprocessing effects
including blurring, gamma correction, and several tone
mapping functions to produce the final image. For produc-
ing easily controllable examples a set of functions produc-
ing graphical user interface is available, see an interface
for controlling voxel-based global illumination in the right
part of Figure 1.

The source code and further information about the
library can be found at https://gitlab.com/
mallumo/mallumo.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

https://gitlab.com/mallumo/mallumo
https://gitlab.com/mallumo/mallumo


4 Extensions To Voxel-Based Global
Illumination

For computing global illumination, a scene geometry is
turned into voxel representation and then sampled using
cones to obtain indirect illumination. To obtain a voxel
representation of a scene in an arbitrary data structure,
mallumo uses a method of voxelization described in the
work of Green and Crassin [6].

Depending on what data structure is used, a different
compute path is taken at the end of voxelization. Frag-
ments of volume textures are written directly, but in case
of sparse voxel octrees, fragments are added at the end of a
buffer, called the voxel fragment list, to be used for build-
ing the node pool, and then written to a volume texture,
called the brick pool, which stores sparse data densely.
The node pool contains pointers to the brick pool.

Voxelised data of a scene are sampled by cone tracing
using a method proposed by Amanatides [1]. In this work,
rays are represented as cones defined by their origin, di-
rection, and angle of spread. The spread angle is the angle
between the centre line of the cone and the cone bound-
ary as measured at the apex of the cone. Deferred shading
is used to determine for which surface points a computa-
tion of the indirect illumination is needed. At each such
point, a series of cones is sent through the voxel structure
to calculate the inirect illumination effects.

Several cones are sent to calculate the diffuse compo-
nent. One tight cone is sent in the reflected direction with
respect to the viewpoint to capture the specular compo-
nent. The aperture of this specular cone is based on rough-
ness value in the PBR model used. Ambient occlusion can
be obtained in the same way as the diffuse component, but
sampling only the opacity value. When calculated for in-
door environments, a weight function decaying with the
distance is used for obtaining more practical values. Ad-
ditionally, a crude approximation of an area light is ob-
tained by storing and sampling emissive value separately
in a voxel data structure. Cones are sampling values from
a voxel data structure by stepping along the ray and cal-
culating the desired the mip level based on the diameter.
Example of voxel-based cone tracing can be seen in Fig-
ure 2.

4.1 High Dynamic Range Storage

A high dynamic range of colours may be desirable to vox-
elise and store in a voxel data structure. However, vox-
elization of data must be done atomically and most GPUs
have their atomic operations limited to only 32 bits. This
is sufficient if each RGB colour channel is represented
with 8 bits and the fourth channel is dedicated to counting
number of fragments belonging to a voxel. However, the
amount of data that can be stored in 24 bits is not enough
to capture both colour and intensity of very bright light
sources. This translates to wrong calculations with the in-

Figure 2: Top: a scene lit only using direct light. Bottom:
a scene lit using voxel-based global illumination.

tensity of the sun being too high or emission of an area
light contributing to the final image. An example of such
calculation can be seen in Figure 3.

A solution we implemented is to create a voxel data
structure, called the mutex structure, of the same size as
the voxel data structure containing data so that each voxel
has an associated mutex in the lock structure. The mu-
tex structure contains boolean values, set to false at the
beginning of voxelization process, expressing the state of
whether the associated voxel is currently being modified or
not. Similarly, a count voxel structure is also introduced to
separate the count and allow the maximum of 128 bits to
be used for HDR values.

Each thread writing a voxel value then uses atomic ex-
change function to obtain the lock on a voxel after which
it can write its value. There is additionally a limit on the
number of unsuccessful tries of taking the lock. This may
result in loss of some data, but prevents stalling the GPU.

An alternative to our approach may be the use of Ward’s
RGBE 32 bit format [24], which can be seen as a compro-
mise between the amount of memory used and the preci-
sion of colour and intensity stored.

4.2 Anisotropic Filtering

Mipmapping of a voxel data storage is required for ef-
fective cone tracing. There are two options on how to
mipmap voxels, both of which we implemented in mal-
lumo. First one is isotropic, where eight voxels are equally
accounted for in the calculation of one final voxel in the

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: Example of deficiency of low dynamic range
values in case of area lights. Walls acts as diffuse objects
with RGB values of (0, 1, 0) and (1, 0, 0) respectively.
The sphere acts as an area light with RGB value of (0, 0,
10). On the left, a low dynamic range cone tracing. On the
right, a high dynamic range cone tracing.

Figure 4: Difference between isotropic and anisotropic
mipmapping. Top: isotropic filtering, notice how different
coloured voxels are combined into one completely differ-
ent colour and fully opaque and fully transparent voxels
become partially transparent. Bottom: anisotropic filter-
ing: notice how colours and transparency are preserved,
averaging is performed only from some sides.

higher mip level. However, such method creates artefacts,
for example combining two different colours of a double-
sided wall into one that is incorrect for both sides, or com-
bining transparency making transparent voxels visible and
opaque voxels transparent, see top part of Figure 4.

To solve this problem, anisotropic mipmapping can be
used. For every voxel, each side is mipmapped sepa-
rately, see bottom part of Figure 4. To use cone tracing
on the anisotropic voxel data structure, it has to sample a
weighted average of three visible faces.

A shortcoming of this method is its higher memory us-
age. This increase is roughly 1.85 times more when com-
pared to the isotropic case, as can be derived by summing
the size of volume texture and all its mipmaps.

4.3 Cone Distributions

The original work of Crassin et al. [5] did not address a
distribution of cones over the hemisphere, only rough es-
timate of their number was given, to be between five and
nine. Due to this problem we implemented cone distribu-

Figure 5: From left to right, examples of concentric non-
overlapping cone distributions for n of 3, 8, and 18. The
top part contains non-uniform distributions and the bottom
part contains uniform distributions. In case of three cones,
the distribution is exactly the same, but the difference in-
creases with more cones, and decreases again when using
more than a dozen of cones.

tions based on the work of Appelbaum and Weiss [2].
The problem of distributing n number of non-

overlapping cones over a hemisphere is a problem of pack-
ing non-overlapping circles on hemisphere surface. The
solution consists of packing the circles in concentric cir-
cles as shown in Figure 5. The spread angle of cones can
either be uniform or non-uniform. Distributions of cones
are precalculated and then rotated to match the normal
space of each rendered point in space.

5 Atmosphere and Clouds

mallumo implements an atmospheric model of Bruneton
et al. [3], which is a clear sky atmospheric model that as-
sumes atmosphere made out of only molecules and small
particles such as aerosols. The atmosphere itself is a spher-
ical layer of these particles around a globe. The distribu-
tion of particles in the atmosphere is not uniform, however,
the density at each point is parametrised only by height,
not by altitude or longitude. While the precomputation
phase for this model is rather costly, rendering is done in
constant time.

mallumo also implements a method for cloud rendering
based on the work presented by Schneider [21]. An exam-
ple of two renderings that differ in the sun position can be
seen in Figure 6. The method has a small precomputation
phase in which are generated noise textures. The render-
ing part consists of raymarching along the view ray and
accumulating light provided by the atmosphere.

5.1 Modelling Clouds

Modelling approach of clouds is based on raymarching,
as described by Schneider [21]. View direction is deter-
mined for each pixel and samples are accumulated along
the view ray. Density is computed at each sample point,
and the sample is illuminated by the atmosphere, in this
case using the Bruneton model. The density is given by

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: Renderings of the clouds with the sun at the
zenith angle of 50° (top) and 66° (bottom).

a set of parameters whose product gives the final density.
The first parameter is coverage, which determines whether
there is a cloud. While technically the coverage parame-
ter is either 0 or 1, it is better to define it as a gradient,
to provide smoother scale and to prevent hard edges. The
second parameter is given by altitude: the higher the sam-
ple, the denser the cloud. The third parameter is given by
the cloud’s type. We implemented three types of clouds:
stratus, cumulus, and cumulonimbus. Again, these are im-
plemented as gradients over altitude, and the cloud type
parameter is a gradient over the types of clouds. With this
method it is possible to define numerous types, however,
this is not sufficient for the cloud types, for which is char-
acteristic that individual clouds overlay each other.

5.2 Noise Textures for Clouds

This method of rendering clouds uses three noise textures
and one control texture. At each point, the three noise
textures are queried and combined, and the control tex-
ture provides information about coverage, cloud type, and
turbidity. The textures are generated from the following
noises: Worley noise, Simplex noise, and Curl noise.

Worley noise was introduced by Steven Worley [25] and
is regularly used for caustics and water effects. It has
round features, which make it suitable for modelling bil-
low like shapes similar to clouds. Simplex noise was intro-
duced and later improved by Ken Perlin [19]. Layering 2D
Simplex noise at increasing frequencies creates visually

interesting and detailed hills and valleys. This extended to
3D provides clouds with a more detailed look. Curl noise
is used for fluid, fire, and smoke effects, and when used as
a lookup table is a relatively inexpensive method to distort
cloud shapes and add turbulence.

Two of the three noise textures are created by modulat-
ing and layering inverted Worley and Simplex noise. Curl
noise is used for the third one. An example of layers of
different noise textures can be seen in Figure 7.

5.3 Rendering Clouds

Rendering clouds is done by raymarching, i.e., for a point
and a vector, a set of points is sampled along the ray. In
the case of clouds, the data that are collected from samples
are densities at each sample point. The densities that are
collected are used in several ways. When raymarching a
view ray, density is used to occlude what is behind the
sample, and at each view ray’s sample, it is also required
to determine its colour.

Raymarching is costly which leads to poor framerate.
This can be partially alleviated with the following tech-
niques, at the loss of visual quality. Luckily, pixel level
details are not necessary for clouds, so the loss is not that
important. The most basic optimisation technique is to
simply render at a lower resolution and then stretch the
image. In addition to it, reprojection is based on exploit-
ing the assumption, that the camera does not move rapidly
between frames. Thus the majority of pixels would have
mostly correct values if they were not redrawn, albeit they
may be slightly moved, which is corrected by taking into
account the previous view matrix.

6 Results

We compare the timings of several voxel-based cone trac-
ing methods in the Table 1. Selected operations are: vox-
elization of a scene, injection of light into a voxel struc-
ture, and cone tracing with 3, 9, and 18 cones. The oper-
ations were performed on the Sponza testing scene. Re-
sults were obtained by running each operation 100 times
and averaging the timings obtained. Tests were performed
on Windows 10, NVIDIA Geforce GTX 1070 with 8GB
of memory with driver version 391.24, Intel Core i7 920
CPU. Acronyms used in the table are:

• VT/SVO - type of storage, either Volume Texture
(VT) or sparse voxel octree (SVO)

• ISO/ANI - type of voxels, either isotropic (ISO) or
anisotropic (ANI)

• LDR/HDR - range of colours, either Low Dynamic
Range (LDR) or High Dynamic Range (HDR)

• V - Voxelization operation

• RI - Radiance injection operation

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: From left to right, examples of different layers of the noise textures for clouds generation: Simplex+Worley
noise, layered Worley noise and Curl noise.

Dimension V (ms) RI (ms) CT3 (ms) CT9 (ms) CT18 (ms)
VT + ISO + LDR 256 5.03 1.17 1.42 4.17 10.00
VT + ISO + LDR 512 24.53 7.80 1.53 4.71 11.59
VT + ISO + HDR 256 14.33 3.36 4.83 22.87 60.03
VT + ANI + LDR 256 6.10 1.55 1.61 4.50 10.10
VT + ANI + LDR 512 34.11 10.72 1.70 5.96 13.17
VT + ANI + HDR 256 19.80 4.50 6.74 28.00 68.52
SVO + ISO + LDR 256 787.51 76.55 4.04 22.00 60.52
SVO + ISO + LDR 512 2201.27 124.79 4.81 26.61 74.01
SVO + ISO + HDR 256 725.39 74.44 5.80 31.16 84.90
SVO + ANI + LDR 256 954.42 130.45 3.14 13.27 34.07
SVO + ANI + LDR 512 2759.37 367.47 3.60 16.55 41.98
SVO + ANI + HDR 256 948.32 144.43 7.47 30.94 76.71

Table 1: Voxel-based cone tracing performance of most relevant configurations.

• CTx - Cone Tracing with x number of cones

Some of the combinations of a storage miss resolution
of size of 512 which is due to the fact that some of these
configurations have higher memory usage than the GPU
on which tests were performed. Even when a GPUs driver
handles memory larger than available on GPU, it is simply
moved to CPUs memory and retrieved on demand, leading
to undesirable performance loss. For proper interpretation,
it must be noted that voxelization and radiance injection
steps include mipmapping of a voxel storage.

As can be seen, anisotropy has minimal performance
penalty during cone tracing, but due to writing to 6 times
more textures during mipmapping, it incurs cost during a
voxel structure creation steps. Adding high dynamic range
roughly doubles the time of cone tracing in case of vol-
ume texture, but can add far more significant overhead dur-
ing texture creation, up to 10 times more. This is caused
by both, using the mutex structure, and having to write 4
times more data. Sparse voxel octree incurs the highest
cost in all stages. The voxelization step is slowed down by
the need to go through voxel fragment list, nodepool, and
brickpool before successfully voxelizing a scene. In the
case of cone tracing, voxels must be first found by travers-

ing the octree (nodepool) before retrieving them and man-
ually interpolating them, both of which are costly.

The comparison of memory usage of voxel storage solu-
tions is shown in Table 2. Comparing volume texture and
sparse voxel octree is non-trivial. Therefore, the memory
cost of all substructures of sparse voxel octree are in the
table.

Voxel Fragment List and Node Pool are both overheads.
Each node in the node pool always has a fixed size of 16
bytes per node, 4 bytes for next pointer and 12 bytes for
pointers to their neighbours in X, Y, and Z axes. Each
fragment contains its position and its albedo, resulting in
a total of 16 bytes. Brick Pool is expressed as a number of
voxels which is, for bricks of 33 voxels per node, 27 times
number of nodes.

In the last column, a percentage of voxels used in sparse
voxel octree compared to a volume texture is calculated.
As can be seen, any resolution lower than 128 produces
worse results in case of sparse voxel octree, which is
caused by the fact that at such low resolution, every voxel
is intersected by at least one polygon. The aforedescribed
comparison is neutral to the amount of data stored in a
voxel storage. For example, in case of a high dynamic

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Dimension Voxel Fragment List (MB) Node Pool (MB) Brick Pool (Voxels) Ratio (%)
32 6.12 0.03 55 539 169.49
64 7.10 0.18 323 811 123.55
128 10.48 0.87 1 542 483 73.55
256 20.80 3.94 6 974 235 41.57
512 54.22 17.90 31 671 459 23.60

1024 173.46 84.21 149 002 011 13.87

Table 2: Memory Comparison of Volume Texure and Sparse Voxel Octree.

Downsampling / G1(ms) G2(ms) G3(ms)Reprojection
1 / 2 1258.392 132.948 88.641
1 / 4 484.961 56.288 35.162
2 / 2 598.094 55.686 34.406
2 / 4 216.141 23.176 17.586
4 / 2 235.653 23.323 17.229
4 / 4 80.553 9.456 13.209

Table 3: Cloud rendering speed at FullHD resolution.

range, relative savings for sparse voxel octree are still the
same, the actual storage is simply four times higher.

If compression of memory and amount of detail are the
main concern and voxelization can be done as precompu-
tation step, sparse voxel octrees may serve as a viable al-
ternative to naive volume textures.

6.1 Clouds

Benchmarks were compiled with Rust 1.26, and were done
on 3 PCs, all running Windows 10, with the following
GPUs: NVIDIA GeForce GTX 860M, NVIDIA GeForce
GTX 1070 and AMD Radeon RX Vega 64. These GPUs
are listed as G1, G2, G3, respectively. The results are ob-
tained by averaging 500 runs.

Table 3 shows that doubling downsampling ratio re-
duces the rendering time to half, in some configurations to
one third. This is slightly unexpected as doubling down-
sampling ratio reduces the final image to a fourth of its
size. One possible explanation is the overhead of the cloud
rendering method, possibly waiting too long for the texture
lookups. Doubling the number of frames needed to com-
pose the final image using reprojection reduces the render-
ing time by two thirds on some configurations and by third
on others. This can be explained by the overhead of repro-
jection, which is not worth on smaller resolutions, which
downsampling imitates.

7 Conclusion

We presented our rendering library mallumo with its entire
pipeline and all the associated techniques used to support
our photorealistic techniques. We have provided a detailed
description of our implementation, including voxel-based

global illumination with focus on the support for high-
dynamic range storage in voxels, anisotropic filtering, and
cone distribution, as well as a procedural generation of at-
mosphere and clouds. In the future, we plan to optimize
these techniques further and integrate them with existing
real-time rendering software and game engines.

References

[1] John Amanatides. Ray tracing with cones. In Pro-
ceedings of the 11th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’84, pages 129–135, New York, NY, USA,
1984. ACM.

[2] J Appelbaum and Y Weiss. The packing of circles
on a hemisphere. Measurement Science and Tech-
nology, 10(11):1015, 1999.

[3] Eric Bruneton and Fabrice Neyret. Precomputed
atmospheric scattering. In Proceedings of the
Nineteenth Eurographics Conference on Rendering,
EGSR ’08, pages 1079–1086, Aire-la-Ville, Switzer-
land, Switzerland, 2008. Eurographics Association.

[4] Brent Burley. Physically-based shading at Disney.
In ACM SIGGRAPH 2012 Courses, New York, NY,
USA, August 2012. ACM.

[5] Cyril Crassin. GigaVoxels: A Voxel-Based Render-
ing Pipeline For Efficient Exploration Of Large And
Detailed Scenes. PhD thesis, Universite de Grenoble,
7 2011.

[6] Cyril Crassin and Simon Green. Octree-Based
Sparse Voxelization Using The GPU Hardware Ras-
terizer, chapter 22. CRC Press, Patrick Cozzi and
Christophe Riccio, 2012.

[7] Carsten Dachsbacher and Marc Stamminger. Re-
flective sha-dow maps. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games,
I3D ’05, pages 203–231, New York, NY, USA, 2005.
ACM.

[8] David Ebert. Volumetric modeling with implicit
functions: A cloud is born. Visual Proceedings of
SIGGRAPH, 1997, 05 1997.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



[9] Ned Greene. Environment mapping and other ap-
plications of world projections. Computer Graphics
and Applications, IEEE, 6:21–29, 12 1986.

[10] Jörg Haber, Marcus Magnor, and Hans-Peter Sei-
del. Physically-based simulation of twilight phenom-
ena. ACM Trans. Graph., 24(4):1353–1373, October
2005.

[11] Brian Karis. Real shading in Unreal Engine 4. In
ACM SIGGRAPH 2013 Courses, New York, NY,
USA, August 2013. ACM.

[12] Alexander Keller. Instant radiosity. In Proceed-
ings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’97, pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[13] Áron Samuel KOVÁCS. Atmospheric effects for
real-time global illumination, 2018 [cit. 2019-03-
16].

[14] Gilles LAURENT, Cyril DELALANDRE, Gregoire
De LA RIVIERE, and Tamy BOUBEKEUR. For-
ward light cuts: A scalable approach to real-time
global illumination. Compurer Graphics Forum
(Proc. EGSR 2016), 35(4):79–88, 2016.

[15] Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro
Nakamae. Display of clouds taking into account mul-
tiple anisotropic scattering and sky light. In Proceed-
ings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’96, pages 379–386, New York, NY, USA, 1996.
ACM.

[16] Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura,
and Eihachiro Nakamae. Display of the earth tak-
ing into account atmospheric scattering. In Proceed-
ings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’93, pages 175–182, New York, NY, USA, 1993.
ACM.

[17] NVIDIA. NVIDIA VXGI. https:
//developer.nvidia.com/nvidia-vxgi,
2019. Accessed 11-February-2019.

[18] Eduardo Pavez, Philip Chou, Ricardo De Queiroz,
and Antonio Ortega. Dynamic polygon clouds:
Representation and compression for vr/ar. APSIPA
Transactions on Signal and Information Processing,
7, 01 2018.

[19] Ken Perlin. Improving noise. In Proceedings of the
29th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’02, pages 681–
682, New York, NY, USA, 2002. ACM.

[20] A. J. Preetham, Peter Shirley, and Brian Smits. A
practical analytic model for daylight. In Proceed-
ings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’99, pages 91–100, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[21] Andrew Schneider. The Real-time Volumetric
Cloudscapes of Horizon: Zero Dawn.

[22] Ari Silvennoinen and Jaakko Lehtinen. Real-time
global illumination by precomputed local reconstruc-
tion from sparse radiance probes. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH
Asia), 36(6):230:1–230:13, November 2017.

[23] Matúš TALČÍK. Comparison of cone tracing meth-
ods for real-time global illumination, 2018 [cit.
2019-03-16].

[24] Greg Ward. Ii.5 - real pixels. In JAMES ARVO, edi-
tor, Graphics Gems II, pages 80 – 83. Morgan Kauf-
mann, San Diego, 1991.

[25] Steven Worley. A cellular texture basis function. In
Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’96, pages 291–294, New York, NY, USA,
1996. ACM.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

https://developer.nvidia.com/nvidia-vxgi
https://developer.nvidia.com/nvidia-vxgi

	Introduction
	Related Work
	mallumo
	Extensions To Voxel-Based Global Illumination
	High Dynamic Range Storage
	Anisotropic Filtering
	Cone Distributions

	Atmosphere and Clouds
	Modelling Clouds
	Noise Textures for Clouds
	Rendering Clouds

	Results
	Clouds

	Conclusion

