
3D Motion Blur For PET Using GPGPU

Dóra Varnyú∗

Supervised by: László Szirmay-Kalos†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

Computing motion blur is important not only in video
games and movie rendering, but also in physical simula-
tions where the effect of the movement has to be calcu-
lated and compensated. One such application is dynamic
Positron Emission Tomography (PET), which is one of to-
day’s most important medical imaging techniques. When
studying neurological disorders like epilepsy with PET,
the involuntary movement of the patient during a seizure
can ruin the examination results. Because of this, motion
compensation should be incorporated into the reconstruc-
tion process. When the movement is rapid, accurate mo-
tion blur presents a challenge even if only 2D image space
results are needed and hardware capabilities can be ex-
ploited. However, in the case of PET, the blurred result
is expected in the 3D space. Blurring the motion of a 3D
object in the 3D space can be done by dividing its bound-
ing box into homogeneous voxels and tracking the path of
each voxel independently. As low execution time is cru-
cial, simplifications must be applied at the expense of ac-
curacy. The solution proposed in this paper approximates
the path of each voxel with a sequence of line segments.
The segments can then be sampled by properly adapted 3D
line drawing algorithms such as the Antialiased Bresen-
ham Algorithm. Implementation is accelerated by parallel
execution on GPU using the CUDA platform.

Keywords: 3D, Motion Blur, Line Drawing, Antialiased
Bresenham, Positron Emission Tomography, PET, CUDA,
GPU, GPGPU

1 Introduction

Dynamic Positron Emission Tomography (dynamic PET)
analyzes the dynamic nature of biological processes
through observing the accumulation and emptying of
drugs in organs [10, 14, 15]. At the beginning of the ex-
amination, a small amount of radioactive material called
radiotracer is injected into the patient, which then spreads
across the body and gets absorbed into the tissues. The
emitted radiation is detected by the tomograph and the

∗varnyu.dora@gmail.com
†szirmay@iit.bme.hu

3D spatial distribution of the radiotracer is reconstructed.
Cells with rapid metabolism, such as cancer cells, absorb
more tracer and thus appear as bright spots on the image.

During reconstruction, the measured volume containing
the body of the patient is divided into a 3D grid of homo-
geneous voxels. The task is to determine the amount of
the radiotracer in each of the voxels based on the emission
detected by the detector ring surrounding the volume.

When studying neurological disorders like epilepsy, the
self-motion of the patient is often unavoidable, which can
ruin the examination results. The problem can be attacked
by measuring real-time the movement using markers [7]
and incorporating the gathered information into the recon-
struction process. The solution we are proposing uses the
information about the movement to apply motion blur on
the voxel array during measurements.

Object position at any moment can be described with
a geometric transformation consisting of translation and
rotation. As motion is a change in position, movement is
also described by a geometric transformation in the form
of a translation vector and a quaternion for rotation.

The input of the motion blur computation is the voxel
array containing the current estimation of the number of
radioactive decays that occured in the voxels and the geo-
metric transformation determined using the markers on the
patient. The input array is considered to be moving along
with the patient. During motion blur, the task is to map the
voxels of this moving array into a motionless destination
array of the same size. The output is the unmoving array
with voxel activities mapped from the moving array.

The classical solution to the problem is to calculate the
position of each moving voxel’s center point in very small
time steps, i.e. determine which voxels of the motionless
array does the currently examined moving voxel overlap.
This means interpolating the geometric transformations
describing object motion and then applying the resulting
transformation at every time step. Translation vectors are
interpolated linearly and the quaternions using Spherical
Linear Interpolation (SLERP, Figure 1).

When accuracy is an important aspect, each voxel path
should be sampled at a sufficiently high frequency relative
to the motion dynamics. Furthermore, since in most cases
the voxels of the moving and the motionless arrays over-
lap each other only partially (Figure 2), additional points

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

P1

P2t

LERPP1,P2,tLERPP1,P2,t

t
SLERPP1,P2,tSLERPP1,P2,t

Figure 1: Interpolation of two points using Linear In-
terpolation (LERP) and Spherical Linear Interpolation
(SLERP) with t = 0.8

within the volume of a voxel beside its center point should
be tracked as well.

W
V

Figure 2: Partially overlapping voxels

The computational complexity of this task can lead
to unacceptably long execution times, which necessitates
simplifications. One such simplification method is the ap-
proximation of the path of each voxel with a polyline, i.e.
a sequence of line segments (Figure 3). More precisely,
the duration of the movement is divided into several time
frames, in each frame assuming both linear and angular ve-
locities to be constant, which results in linear voxel paths.
This way, exact voxel positions are calculated only for the
beginning and end of the frame and these two points are
interpolated during computations. If the time frames are
small compared to the dynamics of the object’s rotational
motion, this simplification can result in significantly less
execution times with only a minimal decrease in accuracy.

Figure 3: The path of each moving voxel is approximated
with a polyline

Assuming that voxels follow a piece-wise linear path,
the motion blur algorithm becomes similar to a 3D line
rasterization method. Based on our previous study on
line drawing algorithms [18], which compared the per-
formance of seven different algorithms known either from
computer graphics or tomographic reconstruction, poten-
tially overlapping voxels along a line segment are deter-
mined by the Antialiased Bresenham Algorithm.

This paper analyzes the solution in terms of speed and
accuracy and determine whether the approximation of
paths with sequences of line segments proves to be an effi-
cient solution. Our implementation is parallelized with the
CUDA platform in order to take advantage of the graphics
card’s computing power.

2 Related Works

This section covers how motion can be handled during
PET reconstruction and analyzes existing motion blur
techniques with respect to their applicability in PET.

2.1 Motion Compensation in Tomography

In dynamic tomography, the measurement time is divided
into several time frames according to the tracer dynam-
ics. Reconstruction usually iterates two steps. First
a maximum-likelihood expectation-maximization (ML-
EM) static forward projection and back projection [12]
are executed for each frame with frame dependent posi-
tion and orientation of the patient. Forward projection de-
termines the expected number of detector hits based on
our estimate of the radiotracer’s spatial distribution, while
back projection corrects this estimate based on the ratio of
the number of expected and measured hits. Having exe-
cuted the projections, the parameters of a time function of
predefined form are fit in each of the voxels [19]. Since
the number of projections is proportional to the number
of frames, the frame number has a high impact both on
reconstruction time and memory usage. However, rapid
movements such as those that occur when the patient has
an epileptic seizure require a very high number of frames
for an accurate result.

Several solutions were suggested in recent years to
tackle this problem, but each one has its limitations.

Gated approaches [5, 17] seek to overcome the prob-
lem of motion inside the frame by keeping hits close to
discrete time samples, but this results in losing significant
information, thus they are less reliable for low statistics or
low dose experiments.

A different solution aims to find the list that would
have been measured if the subject had remained motion-
less by re-binning the list of detector hit events [3, 4, 8].
Afterwards, a conventional reconstruction is executed for
the modified sinogram. Although such sinogram filtering
techniques are simple to implement and efficient, they can-
not be applied for effects happening in the detectors. Be-
cause of this, they either add noise to the image or result in
the measurement data being filtered so that it is not of Pois-
sion distribution anymore and suffer from the missing or
lost data problem. This missing data problem comes from
the fact that events can be transformed out of the field of
view of the tomograph, which would be compensated by
events transformed in. However, events outside the field
of view are not measured, thereby they cannot be trans-
formed in.

The method we are proposing incorporates continuous
motion during the frames by executing motion blur on
the voxel array before both forward and back projection.
Apart from these two additional computations, all other
components of the simulation are the same as in the dy-
namic reconstruction system developed without motion
compensation.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

2.2 Motion Blur Techniques

Motion blur is a phenomenon that manifests as a visible
trail along the trajectory of a moving object. It is the
result of the physical limitations of recording devices as
they require a finite exposure time to integrate light. The
effect is widely used by photographers to create the per-
ception of motion on still images and also commonly ap-
plied in movie and video game rendering where the goal
is to make movement on the scene look more natural.
While motion blur is automatically incorporated in images
recorded using real cameras, for computer-generated im-
ages it needs to be explicitly simulated. Several solutions
exist with different assumptions, limitations and associ-
ated visual artefacts. An overview of the state-of-the-art in
motion blur rendering techniques was reported by Navarro
et al. [9]. They divided existing methods into seven cate-
gories: analytical, geometrical substitution, texture clamp-
ing, Monte Carlo, post-production, hybrid and physically
inspired techniques.

Analytic methods use closed form expressions that can
be exactly evaluated to get pixel intensities. Because of the
non-linearity of lighting equations, this family of methods
often rely on heavy assumptions to construct an analytical
description and are as a result limited in their application.

Geometric substitution methods replace moving objects
with new geometry built from the original primitives and
their evolution over time. A simple example is depicting
moving particles of a particle system with antialiased line
segments outlining their trajectories [11].

Monte Carlo methods use point sampling and are there-
fore able to handle phenomena where no analytical or ge-
ometrical description can be given. However, the result
tends to contain random noise artefacts due to low levels
of sampling and the image is not deterministic as sample
points are chosen stochastically.

Post-processing methods blur pre-rendered image snap-
shots using motion information extracted from the objects’
animation data or the images themselves. As all operations
are executed in image space, the approach fully decouples
motion blur from rendering algorithms. This results in a
considerable performance gain at the cost of lower quality.

Hybrid methods target specific aspects of the general
motion blur problem by combining different models. They
are widely accepted due to their efficiency in a broad set
of scenarios and the good quality of their results. How-
ever, most of these techniques are restricted to objects with
polygonal geometry.

Models inspired by the geometrical and optical charac-
teristics of cameras are also becoming increasingly rele-
vant. A number of different approaches aim to simulate
the optics of recording devices and the shutter geometry to
achieve motion blur [1].

It can be concluded that simulating motion blur is chal-
lenging even if only 2D image space results are needed.
Many different solutions were proposed to reduce the
complexity of the problem by relying on approximations

or predefined information about the scene, its objects and
lighting conditions. In the case of PET, where the result is
expected in the 3D space, the 2D rendering pipeline can-
not be utilized and therefore the efficiency of the motion
blur algorithm becomes even more relevant.

A strong limitation imposed by the characteristics of to-
mographic reconstruction is that the geometry of the mov-
ing object is not known. This makes it impossible to use a
number of motion blur techniques that depend on geomet-
ric information about the object or can only operate a spe-
cific type of geometrical representations such as polygons,
spheres or particles. This opts out analytic, geometric sub-
stitution and hybrid methods.

After careful evaluation of the discussed techniques, we
concluded that a stochastic point sampling method would
be the most appropriate to apply in tomographic recon-
struction as it is independent of geometry, can be imple-
mented in a technically simple framework and can be flex-
ibly combined with motion information extracted from the
markers. The downside of this solution is the noise arte-
facts caused by insufficient sampling that can be attacked
by increasing the number of sample points if the resources
and time limits of the examination enable it.

3 Motion Blur Implementation

Our solution operates on two voxel arrays. The object-
space array uses a coordinate system local to the target ob-
ject, while the tomograph-space array is centered around
the unmoving tomograph. Our task is to blur the activi-
ties, i.e. the number of radioactive decays occuring in the
object-space voxels into the tomograph-space voxels.

Let xV,F denote the activity of voxel V in frame F ,
and oV,W,F the average overlap factor of object-space
voxel V and tomograph-space voxel W (oV,W,F ∈ [0,1],
∑W oV,W,F = 1). The activity of each tomograph-space
voxel W in frame F can then be calculated as

xW,F = ∑
V

oV,W,F · xV,F . (1)

We use a gather type, i.e. tomograph-space centric
approach to determine overlapping voxels in order to
avoid the need for atomic operations on the GPU. Each
tomograph-space voxel W is mapped to object space via
the inverse of the geometric transform describing object
motion. Its path is tracked and in each visited object-space
voxel, the activity of W is increased by the activity of the
visited voxel proportionally to the degree of their overlap.

W is assumed to follow a linear path during the frame.
Therefore, efficient 3D line drawing algorithms can be uti-
lized to determine the object-space voxels that W overlaps.
Based on previous research, the Antialiased Bresenham
Algorithm was chosen for the task. The weights calculated
by the algorithm equal to the overlap factors oV,W,F .

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

3.1 Antialiased Bresenham Algorithm

The Antialiased Bresenham Algorithm is the antialiased
version of Bresenham’s line drawing algorithm developed
originally for digital plotters [2].

In 3D, the Bresenham Algorithm iterates in unit steps
through the coordinate axis direction in which the line
changes the most rapidly. At each iteration, it takes the
2D slice of the voxel array orthogonal to the given axis
and selects one single voxel from it, the one that is the
closest to the geometric line. When the algorithm steps
onto the next slice, it chooses whether to increment the
two coordinates identifying voxels in the slice. This is de-
cided with the help of two error variables, one in both co-
ordinate axis directions. The variables keep track of the
distance between the geometric line and the center of the
selected voxel along their designated direction.

A drawback of the Bresenham Algorithm is that it ob-
tains just a single voxel from each slice. When continuous
motion is examined, even if the moving voxel was a single
point instead of a cuboid, it could cross multiple voxels
of the motionless array in each slice (Figure 4). Since the
voxels of the two arrays are generally the same size, ignor-
ing partial overlap results in large errors.

VcenterVcenter

V ′
centerV ′
center

Figure 4: Moving voxel crosses multiple voxels of the mo-
tionless array

The Antialiased Bresenham Algorithm complements
the Bresenham Algorithm with on-the-fly box filtering.
Let’s examine first only the special case when the geo-
metric line is on an axial plane. In 2D, box filtering a
one-voxel-wide line segment requires the calculation of
the area of the line segment’s intersection with the voxels
concerned.

A one-voxel-wide line segment with a slant between 0◦

and 45◦ can overlap up to three voxels in every column
(Figure 5). Let the vertical distance of the three overlapped
voxels’ centers from the geometric line be R, S and T , re-
spectively. Let’s assume that S < T ≤ R. Due to geometric
considerations, S+T = 1.

The areas of intersection, AS, AT and AR depend not
only on the vertical distances, but on the slant of the line
segment as well. However, this dependency can be elimi-
nated using the following approximations [16]:

AS ≈ 1−S = T (2)

AT ≈ 1−T = S (3)

AR ≈ 0 (4)

one
-vox

el-w
ide

line
seg

ment

S

T

R

AS

AT

Figure 5: The line segment can overlap up to three voxels
in every column if its slant is between 0◦ and 45◦.

These formulae can be evaluated incrementally together
with the Bresenham Algorithm’s incremental coordinate
calculation. In every column, the two selected voxels are
weighted by the area of their intersection with the line seg-
ment, i.e. AS and AT . The farthest voxel is disregarded.

Like the original Bresenham Algorithm, the 3D gener-
alization of the Antialiased Bresenham Algorithm iterates
through the direction in which the line changes the most
rapidly. In each slice orthogonal to the given axis, a to-
tal of four voxels are selected. Namely, the voxel that is
the closest to the geometric line, one of its two horizontal
neighbors depending on the slope, one of its two verti-
cal neighbors, and finally the diagonal neighbor between
them (Figure 6). That is, in 3D, the method executes si-
multaneously the 2D special case of the algorithm both
horizontally and vertically relative to the orientation of the
slices, with the addition of a fourth voxel that is adjacent to
the closest voxel only through its corner. Each of the four
visited voxels gets two independent weights, one horizon-
tal weight (AX ,S or AX ,T) and one vertical weight (AY,S or
AY,T), which are then multiplied to form the final weight
of the voxel. This weight expresses the degree of the cur-
rently tracked voxel W that overlaps the voxel V to which
the weight is assigned, i.e. oV,W,F .

AX,S AX,T

AY,S

AY,T

x
y

x+ 1
y

x

y + 1

x+ 1

y + 1

Figure 6: Coordinates (x,y) mark the voxel closest to the
geometric line in the slice. Beside that, a horizontal, verti-
cal and a diagonal neighbor get selected in the slice. Each
voxel gets an independent horizontal and vertical weight.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

3.2 GPU Acceleration

CUDA is a parallel computing platform and programming
model that enables general purpose computing on GPU
(GPGPU). In our implementation, each parallel thread is
assigned to track one tomograph-space voxel during the
frame. A new set of threads are deployed for each frame.

On GPU, memory operations are often a bottleneck of
calculations. Since fast access to the voxels is a key fac-
tor for high performance, the object-space voxel array is
stored in the fast but read-only texture memory. Texture
memory has built-in trilinear interpolator units that can be
used for reducing the number of memory accesses in the
Antialiased Bresenham Algorithm. By utilizing the built-
in interpolation, the four selected voxels in the array slice
can be sampled with only one memory fetch [13], which
also includes proper weighting. The memory address is
calculated as the interpolation of the four voxel centers
with the weights calculated by the Antialiased Bresenham
Algorithm (Figure 7). Horizontal and vertical coordinates
are interpolated separately.

AY,SAY,S

AY,TAY,T

AX,SAX,S AX,TAX,T

Figure 7: The horizontal and the vertical weights calcu-
lated by the Antialiased Bresenham Algorithm are used in
the interpolation to reduce the number of memory reads
from 4 to 1 in each voxel array slice.

Another advantage of the texture memory is its cache
specialized for memory access patterns following spatial
locality. This feature can be fully utilized by our imple-
mentation as threads read adjacent memory addresses.

4 Examination setup

Measurements were focused around two questions. First,
the impact of approximating paths with polylines was ex-
amined. At this stage, the Antialiased Bresenham Algo-
rithm was not yet utilized, voxel paths were simply sam-
pled at predefined time steps.

The classical motion blur technique interpolates the ge-
ometric transformations describing object motion at the
beginning and end of the frame. Assuming voxel paths
to be linear during the frame simplifies this computation
to interpolate the voxel’s starting and ending position so
that no transformations are needed at internal steps. This
latter technique is similar to ray marching, since it samples
along a line segment or ray at predefined distances.

The second question to be examined was whether the
Antialiased Bresenham Algorithm proves to be more effi-
cient than the discussed ray marching technique.

As accurate computations are usually not possible due
to tight time limits, comparisons were executed using low
sampling rate. The number of time steps for both the clas-
sical motion blur and the ray marching was set to equal to
the number of voxel array slices used by the Antialiased
Bresenham Algorithm, i.e. the largest coordinate change
of the line segment’s direction.

We used three phantoms in different motion scenarios.

• The Homogeneity Phantom (Figure 8) is built of 8
constant activity cubes and consists of 256× 256×
256 voxels.

(a) Sagittal
(x = 150)

(b) Coronal
(y = 150)

(c) Transverse
(z = 150)

Figure 8: Slices of the Homogeneity Phantom

• The Derenzo Phantom [6] (Figure 9) is built of rods
with varying diameters between two plates and con-
sists of 256×256×256 voxels.

(a) Sagittal
(x = 100)

(b) Coronal
(y = 103)

(c) Transverse
(z = 137)

Figure 9: Slices of the Derenzo Phantom

• The Zubal Brain Phantom [20] (Figure 10) models
a human’s brain inside its skull and consists of 128×
128×64 voxels.

(a) Sagittal (x = 66) (b) Transverse
(z = 69)

Figure 10: Slices of the Zubal Brain Phantom

Reference was calculated in each scenario with the clas-
sical motion blur technique using a high sampling rate and
multiple sample points within the voxels’ volume as well.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

In each voxel, 200 random points were selected for track-
ing. It should be noted that the classical technique used in
the comparisons tracked only one point in each voxel due
to performance considerations.

Methods were compared in terms of accuracy and
speed. Accuracy comparison used error rates relative to
the reference activity:

Error % =
∑V (xV − x̂V)

2

∑V x2
V

·100, (5)

where xV is the reference activity and x̂V is the estimated
activity of voxel V .

Execution times were measured with the CUDA event
API offered by NVIDIA for performance metrics. All
computations were executed on a NVIDIA GeForce GTX
960M graphics card.

5 Results

Table 1, Table 2 and Table 3 summarize the results while
Figures 11–14 display slices of the blurred arrays to
demonstrate the differences between the algorithms.

Results show that when the rotational motion of the ob-
ject is not too significant, approximating paths with poly-
lines successfully competes with the classical motion blur
technique. In these scenarios, ray marching achieves the
exact same or only a little worse error rates as the classical
approach in half or even less time. The greater the motion,
the more advantage the ray marching gains over the clas-
sical motion blur in speed. This implies that when high
execution times cannot be afforded, the suggested approx-
imation proves to be a reasonable solution. However, if the
rotational motion of the object is large (scenarios #6 and
#8), applying such simplification can lead to unacceptably
high errors.

Focusing on the comparison of the ray marching and
the Antialiased Bresenham Algorithm, it can be concluded
that the Antialiased Bresenham Algorithm performs at
least as good as the ray marching in the examined scenar-
ios. When the movement is small, there is no considerable
difference between the two methods neither in accuracy
nor in execution time. As the motion gets greater, the An-
tialiased Bresenham Algorithm provides greater accuracy,
although at a slightly slower speed. In scenario #3, which
measures large linear movement with no rotation, the An-
tialiased Bresenham Algorithm can achieve up to two or-
ders of magnitude lower error than ray marching depend-
ing on the blurred object.

Although the Antialiased Bresenham Algorithm is gen-
erally a little slower than ray marching, the difference is
not significant compared to the execution overhead of ap-
plying transformations at each step as in the case of the
classical approach. If the object motion tends to be large,
which happens often when neurological disorders are ex-
amined, the Antialiased Bresenham Algorithm may prove
to be the most favorable in terms of overall performance.

(a) Reference (b) Classical)

(c) Ray marching (d) Antialiased Bresenham

Figure 11: Blurred images of the Derenzo Phantom, Sce-
nario 2 ((12,10,−11) voxel translation).

(a) Reference (b) Classical)

(c) Ray marching (d) Antialiased Bresenham

Figure 12: Blurred images of the Homogeneity Phantom,
Scenario 5 (10◦ rotation).

6 Summary

This paper addressed the problem of efficient motion blur
in 3D space for compensating involuntary movement in
dynamic Positron Emission Tomography examinations.
To accelerate calculations, voxel paths were approximated
with polylines and blurring was executed with the An-
tialiased Bresenham Line Drawing Algorithm. The sug-
gested method was compared to the classical motion blur
technique and ray marching in terms of speed and accu-
racy. Results show that if the measured object has no
significant rotational motion to distort the accuracy of the
linear approximation, the Antialiased Bresenham achieves
the greatest accuracy at a very good speed.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Scenario Object motion Error [%] Execution time [ms]
translation rotation CL RM AB CL RM AB
1 (2, 2, 2) 0 0.0611 0.0611 0.0611 68.5384 33.6528 34.9513
2 (12, 10, -11) 0 0.0355 0.0355 0.0316 168.5775 52.9623 53.7336
3 (-20, 30, 15) 0 0.0211 0.1337 0.0087 4620.0122 1035.0973 984.2599
4 (-20, 30, 0) 0 0.0229 0.0238 0.0110 335.5022 84.4063 108.6518
5 (0, 0, 0) 10 0.0278 0.0474 0.0473 454.1396 100.6399 113.5833
6 (0, 0, 0) 60 0.0093 17.6623 17.6603 2472.8540 278.6437 377.6001
7 (2.5, -3.2, -0.7) -5 0.0587 0.0734 0.0787 229.5226 59.7012 61.3481
8 (42, 21, 12) 20 0.0146 0.5404 0.5393 1059.9015 182.7321 218.4056

Table 1: Results on the Homogeneity Phantom of the comparison of the classical motion blur (CL), the ray marching
(RM) and the Antialiased Bresenham Algorithm (AB). Translation is given in voxels and rotation in degrees.

Scenario Object motion Error [%] Execution time [ms]
translation rotation CL RM AB CL RM AB
1 (2, 2, 2) 0 0.7696 0.7696 0.7696 68.5586 34.8277 34.9368
2 (12, 10, -11) 0 0.8664 0.8664 0.5819 167.6756 52.9707 53.7349
3 (-20, 30, 15) 0 0.4557 0.4655 0.1534 327.9224 84.4359 108.6342
4 (-20, 30, 0) 0 0.1105 0.1105 0.0963 338.2086 86.5922 112.1805
5 (0, 0, 0) 10 0.4108 0.5632 0.4818 458.1706 100.6931 113.6382
6 (0, 0, 0) 60 0.1754 50.4148 50.2363 2478.4565 278.5847 376.0340
7 (2.5, -3.2, -0.7) -5 1.2496 1.4567 1.1130 222.5278 59.4808 61.4398
8 (42, 21, 12) 20 0.2196 10.1651 9.7513 1062.7415 182.6560 217.8306

Table 2: Results on the Derenzo Phantom of the comparison of the classical motion blur (CL), the ray marching (RM)
and the Antialiased Bresenham Algorithm (AB). Translation is given in voxels and rotation in degrees.

Scenario Object motion Error [%] Execution time [ms]
translation rotation CL RM AB CL RM AB
1 (2, 2, 2) 0 2.2777 2.2777 2.2777 7.8501 4.0458 4.0384
2 (12, 10, -11) 0 1.1337 1.1337 0.3329 19.2592 7.3780 7.2972
3 (-20, 30, 15) 0 0.5874 0.5876 0.0898 39.7277 11.0532 12.7923
4 (-20, 30, 0) 0 0.1854 0.1888 0.0599 43.5365 11.6059 13.9375
5 (0, 0, 0) 10 0.6587 1.0414 0.7998 32.1842 7.9588 9.9130
6 (0, 0, 0) 60 0.2541 27.8996 27.5332 165.0488 19.4201 27.1628
7 (2.5, -3.2, -0.7) -5 2.5813 2.7822 1.9601 14.9824 6.0723 6.1744
8 (42, 21, 12) 20 0.3330 1.4790 1.0891 99.6831 17.2297 20.1701

Table 3: Results on the Zubal Brain Phantom of the comparison of the classical motion blur (CL), the ray marching (RM)
and the Antialiased Bresenham Algorithm (AB). Translation is given in voxels and rotation in degrees.

References

[1] Brian Barsky, Daniel Horn, Stanley Klein, Jeffrey
A. Pang, and Meng Yu. Camera models and optical
systems used in computer graphics: Part ii, image-
based techniques. volume 2669, pages 256–265, 05
2003.

[2] J. E. Bresenham. Algorithm for computer control of
a digital plotter. IBM Systems Journal, 4(1):25–30,
1965.

[3] P. Buhler, U. Just, E. Will, J. Kotzerke, and J. van den
Hoff. An accurate method for correction of head

movement in pet. IEEE Transactions on Medical
Imaging, 23(9):1176–1185, Sept 2004.

[4] C. Chan, X. Jin, E. K. Fung, M. Naganawa, T. Mul-
nix, R. E. Carson, and C. Liu. Event-by-event respi-
ratory motion correction for pet with 3-dimensional
internal-external motion correlation. In 2012 IEEE
Nuclear Science Symposium and Medical Imaging
Conference Record (NSS/MIC), pages 2117–2122,
Oct 2012.

[5] J. Cui, J. Yang, E. Graves, and C. S. Levin. Gpu-
enabled pet motion compensation using sparse and
low-rank decomposition. In 2012 IEEE Nuclear Sci-

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Reference (b) Classical)

(c) Ray marching (d) Antialiased Bresenham

Figure 13: Blurred images of the Zubal Brain Phantom,
Scenario 3 ((−20,30,15) voxel translation, 0◦ rotation).

(a) Reference (b) Classical)

(c) Ray marching (d) Antialiased Bresenham

Figure 14: Blurred images of the Zubal Brain Phantom,
Scenario 6 (60◦ rotation).

ence Symposium and Medical Imaging Conference
Record (NSS/MIC), pages 3367–3370, Oct 2012.

[6] S. E. Derenzo. Mathematical removal of positron
range blurring in high resolution tomography. IEEE
Trans. Nucl. Sci., 33:546–549, 1986.

[7] J. Jiao, A. Bousse, K. Thielemans, N. Burgos, P. S. J.
Weston, J. M. Schott, D. Atkinson, S. R. Arridge,
B. F. Hutton, P. Markiewicz, and S. Ourselin. Di-
rect parametric reconstruction with joint motion esti-
mation/correction for dynamic brain pet data. IEEE
Transactions on Medical Imaging, 36(1):203–213,
Jan 2017.

[8] M. Menke, M. S. Atkins, and K. R. Buckley. Com-
pensation methods for head motion detected during

pet imaging. IEEE Transactions on Nuclear Science,
43(1):310–317, Feb 1996.

[9] Fernando Navarro, Francisco Serón, and Diego
Gutierrez. Motion blur rendering: State of the art.
Comput. Graph. Forum, 30:3–26, 03 2011.

[10] Andrew J Reader and Jeroen Verhaeghe. 4d image
reconstruction for emission tomography. Physics in
Medicine and Biology, 59(22):R371, 2014.

[11] W.T. Reeves. Particle system-a technique modeling a
class of fuzzy objects. ACM Transactions on Graph-
ics, 17:359–376, 01 1983.

[12] L. Shepp and Y. Vardi. Maximum likelihood re-
construction for emission tomography. IEEE Trans.
Med. Imaging, 1:113–122, 1982.

[13] C. Sigg and M. Hadwiger. Fast third-order tex-
ture filtering. In GPU Gems 2: Program-
ming Techniques for High-Performance Graphics
and General-Purpose Computation, pages 313–329.
Matt Pharr(ed.), Addison-Wesley, 2005.

[14] László Szirmay-Kalos and Ágota Kacsó. Regulariz-
ing direct parametric reconstruction for dynamic pet
with the method of sieves. In Molecular Imaging
Conference, MIC ’16, pages M16D–1, 2016.

[15] László Szirmay-Kalos, Ágota Kacsó, Milán
Magdics, and Balázs Tóth. Dynamic pet reconstruc-
tion on the gpu. Periodica Polytechnica Electrical
Engineering and Computer Science, 62(4):134–143,
2018.

[16] L. Szirmay-Kalos (editor). Theory of Three Dimen-
sional Computer Graphics. Akadémia Kiadó, Bu-
dapest, 1995. http://www.iit.bme.hu/˜szirmay.

[17] M. Toussaint, J. P. Dussault, and R. Lecomte. Revis-
iting motion compensation models in pet image re-
construction. In 2016 IEEE 13th International Sym-
posium on Biomedical Imaging (ISBI), pages 90–94,
April 2016.

[18] Dóra Varnyú and László Szirmay-Kalos. Thick line
integration with filtered sampling. In KEPAF 2019,
Debrecen, 2019.

[19] Guobao Wang and Jinyi Qi. An optimization trans-
fer algorithm for nonlinear parametric image recon-
struction from dynamic pet data. IEEE Trans Med
Imaging, 31(10):1977–1988, 2012.

[20] I. George Zubal, Charles R. Harrell, Eileen O. Smith,
Zachary Rattner, Gene Gindi, and Paul B. Hoffer.
Computerized three-dimensional segmented human
anatomy. Medical Physics, 21(2):299–302, 1994.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

