
Flow Simulation Controlled by Animated Triangle Meshes

Attila Kárpáti∗

Viktória Burkus†

Supervised by: László Szécsi‡

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

Fluid behavior in both real-time and production systems
must often be physically plausible while also allowing
artistic control, possibly forcing otherwise impossible ef-
fects. In this paper we address the use of triangle meshes
to influence flow behavior, including shaping, dissolving,
morphing, separating, and animating liquid bodies.

We discuss options for the underlying flow simulation,
and describe an approach based on smoothed-particle hy-
drodynamics that allows forcing liquids to take shapes
dictated by triangle mesh solid models. We discuss al-
gorithms for translating the constraints to simulation fea-
tures, and elaborate on issues influencing simulation effi-
ciency. We also describe the approach we used to visu-
alize the particle-based fluid simulation. The method re-
constructs the liquid surface using metaballs, constructing
lists of relevant metaballs for every pixel in every frame.
We evaluate alternative solutions to build these lists.

Keywords: Flow Simulation, SPH, Skeletal Animation,
Metaballs

∗karpati.attila.a@gmail.com
†burkus.viki@gmail.com
‡szecsi@iit.bme.hu

1 Introduction

In computer graphics it is frequently desirable to simu-
late volumes made of liquid or gas in real time. In some
cases, for artistic effect, or to render fantastic features or
imaginary technologies, the desired behavior of the fluid is
a combination of some non-physical control element and
realistic simulation. The technique discussed in this pa-
per provides a solution that alters the realistic fluid simu-
lation in a way that the fluid is forced to fill out objects.
To achieve realistic fluid appearance, we reconstruct the
liquid surface with metaballs, using the ray marching al-
gorithm. This technique can be used to present objects or
characters containing liquid or formed entirely out of fluid
material. We also consider and evaluate acceleration op-
tions.

We target effects where the fluid has to, at some point in
time, fill the volume of a shape. These shapes are assumed
to be represented by polygon meshes, as asset pipelines
in real-time systems already work with those, allowing for
easy integration. However, the mesh is typically not dis-
played, because it is only used to manipulate the fluid sim-
ulation. We assume the mesh is manifold, representing a
proper solid. The mesh is used to create new constraints
that force the fluid to fill it out.

The typical scenario of possible application would be
that the fluid simulation is realistic and free of artificial

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



constraints initially, but at some point constraints derived
from the mesh are introduced, forcing the simulation to fill
the shape with fluid, while maintaining plausible fluid be-
havior. The next step can be the removal of the added con-
straint. In this case the behavior of the fluid will again be-
come completely physical, dissolving the assumed shape.

It is also possible to add multiple constraints using sev-
eral meshes. We may want the fluid to fill out the union of
the objects. It is also a possibility that the constraints are
replaced, at some point in time, with constraints from an-
other mesh. In this way objects morphing from one shape
to another can be implemented.

Another application could be that the constraint is added
only to a subset of the elements thereby the chosen ele-
ments can be subtracted from the rest. For example if the
chosen subset of elements has a different color when visu-
alized then the liquid will behave as if it were separated by
color during the simulation.

The biggest benefit from the usage of fluid simulation
to present fluid-based objects is that all of advantages of
the fluid simulation can be applied. For example, the fluid
can be manipulated in a way that is not only realistic and
fills out a shape at the same time, but it also interacts with
other objects in the scene.

2 Previous Work

2.1 Options of fluid simulation

In general there are two main challenges of real-time and
realistic fluid simulation. The behavior of fluids is de-
scribed by the Navier–Stokes equations which are compli-
cated and computationally expensive to evaluate in com-
plex scenes. In order to perform the simulation on comput-
ers numerically, the problems must be discretized. How-
ever, discretization introduces errors that may give rise to
artifacts in the simulation.

We excluded fluid simulation without discretization be-
cause it is only applicable to special cases where solu-
tions can be obtained analytically. There are two main
approaches to discretize the Navier–Stokes equations that
define the relation of velocity, mass density, pressure, vis-
cosity, and external force density. The first set of ap-
proaches is based on space partitioning. These kind of
methods subdivide the space of the simulation and so that
the volume is discretized to geometric elements. If the
masses in the elements are known, then the mass density
can be expressed from the mass and the volume of the ele-
ment. If the mass density is known in every element, then
the pressure can be expressed, too. Thereby the velocity
can be computed. In finite element methods the subdivi-
sion must follow the geometric boundaries (e.g. the solid
walls in between which the liquid flows). As the subdivi-
sion process is typically expensive, for efficient computa-
tion, the boundaries should not be changed or at least not
be changed frequently. Grid-based methods do not adapt

the subdivision to changing boundaries, but they have re-
stricted resolution.

Therefore, in complex and dynamic scenes the other set
of methods using particle based systems are more efficient.
The particle based fluid simulations represent the fluid as
a set of particles. The discretized quantity is the mass, so
every particle has a constant mass. The mass density is
computable from the constant mass and the positions of
the particles. With the mass density and a chosen desired
mass density, the pressure can be expressed, thus the ve-
locity can be computed in this case, too.

2.2 Smoothed-particle hydrodynamics

Smoothed-particle hydrodynamics represents the fluid as
a set of particles. The mass of a particle is constant. The
mass density at a particle can be calculated from the dis-
tance of the near particles and the constant mass. The den-
sity of the fluid can be set as a desired rest mass density, or
desired volume, or desired distance between the particles.
These three quantities can be expressed from one another
with the help of the constant mass. We used the desired
mass density. The pressure at a particle can be determined
using the ideal gas law. The count of mol, the universal
gas constant and the temperature can be replaced by one
stiffness constant, therefore stiffness is a constant property
of the material of the fluid. The pressure at a particle can
be calculated from this stiffness constant, the distances of
the nearby particles, and the difference of the mass den-
sity and rest mass density. The pressure force can be com-
puted from the distances and pressures of nearby particles.
The viscosity force can be expressed from the velocity, dis-
tance, and mass density of nearby particles and the viscos-
ity coefficient. The viscosity coefficient is also a constant
property of the material. The gravitational force at a par-
ticle can be expressed from the mass density and gravita-
tional acceleration. A surface tension force can be used
for smoother fluid surface. It can be approximated from
the mass density and spatial locations of the near particles
and a surface tension constant. The sum of forces and the
constant mass express the acceleration at a particle. With
a chosen time step and with the acceleration, the velocity
and the displacement can be computed.

Throughout the computations, local values are re-
constructed from discrete particle features using special
smoothing kernels. The choice of the smoothing kernels
influences the accuracy of discretization and the occur-
rence of artifacts. The basic fluid simulation implemented
for this paper is based on the paper by Kelager[9].

2.3 Options for altering fluid simulation

There are many possibilities to alter realistic fluid simu-
lations. One way is to assign transformations to defined
parts of the three-dimensional space and when an object
enters the defined domain then the transformation is ap-
plied to the object. The transformation can be applied only

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



partially if the whole object is not contained by the do-
main of the transformation. The transformations and the
domains can be organized into more complex structures to
implement more detailed manipulations. It is also possi-
ble to define energy like functions that penalize not con-
forming to the transformations so the minimization of the
functions can make seamless transition between the do-
mains and can combine intersecting domains. These kinds
of methods are called embedded deformations. This tech-
nique can be easily used on a particle based systems be-
cause the spatial location of a particle is represented by
a single point so the defined domain either contains the
particle in whole or not. The paper by Sumner et al.[14]
present an embedded-transformation-based technique that
can be used on particle systems, too. The drawback of
using embedded transformations to present fluid objects
is that for an arbitrarily chosen object it is hard to define
transformations and domains that force the fluid to fill the
object out. It is even more complicated to define it in a
way that the manipulation would give the effect of realis-
tic fluid behavior.

Foster et al.[4] present methods to manipulate fluid sim-
ulation. The paper defines control parameters for clients
that helps to easily alter the simulation of the fluid. So
the parameters of the fluid are not manipulated directly,
rather the control parameters alter the simulations transi-
tively. Like in the previous paper this technique could be
used to create fluid based objects but this would be com-
plex and not efficient, because it is hard to adjust the con-
trol parameters to force the fluid to fill out the object. This
technique uses space-partitioning-based methods to imple-
ment the computations.

Wiebe et al.[19] suggest a technique to present a char-
acter with liquid skin. Fluid flow is simulated only on the
surface of the character. The result is superficially simi-
lar to the fluid object effect presented in this paper but the
possible applications of the technique are quite different.
The liquid skin only decorates the surface of the object
but the fluid objects feature fully functional fluid simula-
tion that provide more possibility like complex interaction
with other objects in the scene or combinations of multiple
fluid based objects.

The paper by Fattal et al.[3] has a very similar objective
to the fluid based object but it uses smoke as the material
of the presented volume. The desired smoke animation is
achieved by adding two more constraints to the ordinary
smoke simulation. A driving force term that causes the
fluid to carry the smoke towards the target, and a smoke
gathering term that prevents the smoke from diffusing too
much. These terms are calculated from a starting and a
desired spatial density. The calculations are implemented
with space partitioning based methods, while our fluid ob-
jects are simulated using a particle based system. So in the
second case the evaluation is only performed at the particle
positions, eliminating the need for gathering a term. Their
driving force term and the control particles presented in
this paper are very similar, as the filling of objects in this

paper is accomplished using control particles placed in-
side the given mesh. These control particles make artifi-
cially low pressure and evaluation positions that force the
nearby fluid particles to equalize the differently pressur-
ized areas. This could be considered as a desired spatial
density. Consequently, the basic theoretical concepts in
the two papers are very similar, but the difference in the
fluid representation implies very different field of applica-
tions and options for implementations. Our proposed tech-
nique represents the fluid as a particle system and therefore
our method is preferable in complex and dynamic scenes
as discussed in section 2.1. The paper by Hong et al.[6]
presents a technique that also forces the fluid to fill out pre-
defined objects. The object is defined as a potential field
that can be produced in various ways. The paper uses a
space partitioning based Navier-Stokes solver to simulate
the fluid. The benefit of the presented technique is that
this solver can be used to alter the flow of the fluid ac-
cording to the desired potential field. But our method has
the advantage of representing the fluid as a set of parti-
cles which implies the possibility to replace the potential
field with control particles. The animation or placement
of these control particles is significantly more simple and
computationally less expensive than modifying a potential
field.

2.4 Metaballs

Metaballs by Blinn[1] and Nishimura[12] are implicit sur-
faces that are widely used to display simulation results or
smooth objects. Each metaball contributes to an overall
density according to a radial density function. An isosur-
face of the overall density can be used to define a smooth
fluid surface.

The surface can be visualized by different methods. The
ray casting method by Nishita et al.[13] produces high-
quality smooth images, however, the downside is that the
ray-surface intersection test also has a high computational
cost. Typically, ray marching is applied, scanning the
ray linearly for an approximate intersection. The articles
by Kanamori et al.[8] and Szécsi and Illés[15] introduce
faster ray casting solutions.

Another option is the Marching Cubes algorithm by
Lorensen et al.[11]. The algorithm creates triangle models
of constant density surfaces. The quality depends on the
resolution of the grid, with a low-resolution grid the algo-
rithm is fast, but causes artifacts to appear on the surface.
With a high-resolution grid, we can get high-quality re-
sults but with extremely high computational and memory
costs.

The third option is to use a screen-space filtering by
Wladimir J. van der Laan et al.[16], which has real-time
performance with a configurable speed-quality trade-off
and smoothes the surface to prevent from looking jellylike
but not useful for close-ups.

We selected a ray marching method and implemented it,
but with a filtered list of metaballs. Isosurface ray march-

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



ing can be considered a special case of ray casting. Rays
are cast from the position of the eye through every pixel
of the output image, and the image is rendered by finding
intersection points between rays and the surface.

To determine the intersection between the ray and the
surfaces, isosurface ray marching starts at the eye position
and moves this point along the ray direction with a prede-
termined increment. At each step the algorithm checks
whether the point is included in the object. If so, an
approximate intersection has been found; otherwise, the
algorithm moves forward until it reaches the maximum
number of steps. It is possible to refine the point of in-
tersection by iterative root finding methods. In any case,
the containment test has to be evaluated at every step, and a
similar process is required to obtain surface characteristics
for shading at an intersection point. Therefore, in case of
metaball geometries, performance depends on how many
particles must be considered in these computations. Our
contribution is an evaluation of some options to filter the
metaballs that may contribute to a ray using rasterization
hardware. The impact of these solutions manifests when
using extremely high particle counts. We target a method
that produces high-quality smooth images, but at a lower
computational cost than the brute force method.

2.4.1 Visualization and acceleration schemes

The first particle-based implicit surface was introduced in
J. F. Blinn’s article[1]. In this article they describe that
quantum mechanics represents the electron in an atom as
a density function of the spatial location. This function
can be represented by summing the contribution from each
atom separately. The disadvantage is that the calculation
of the isosurface is expensive because every blob must be
considered when calculating. The metaball model we use
is described in the article by Szécsi and Illés[15].

A lot of papers describe how to render metaballs using
the GPU. One of them is Loop and Blinn’s[10] method
which is fast when the count of metaballs is small, how-
ever, not really good for a large number of metaballs.
Iwasaki et al.[7] describe a new method to display the
surface of a particle simulation, but this approach is not
suitable when minor details are required. Van Kooten et
al.[17] describe another method for rendering metaballs on
the GPU. The particles are spread evenly on the surface,
but the approach is not good at visualizing small details.

Without any proper implementation of acceleration op-
tions, the algorithm always takes into consideration all par-
ticles during the ray–isosurface test in each frame. To
avoid this, we have considered various options. A com-
mon feature of the methods detailed below is that they
capture global information of a 3D scene on a per-pixel
basis, and the results are stored in buffers. They are help-
ful to render complex effects such as order independent
transparency, volume rendering, trimming, or collision de-
tection and a lot more. In our case the per-pixel arrays
are helpful when the ray marching algorithm evaluates the

containment test function, since it is sufficient to consider
only the particles stored in the result buffer.

The A-buffer by Carpenter[2], a descendant of the Z-
buffer (also called anti-aliased, area-averaged or accumu-
lation buffer) was the first method for capturing all frag-
ments per pixel in a frame and to resolve visibility among
a collection of transparent, opaque, and intersecting ob-
jects. The result of this algorithm is a buffer with the size
of the final image. Each position in this buffer corresponds
to a pixel. An element of the buffer contains either a color,
if that pixel has one fragment, or a pointer to another list,
called a fragment list, with all fragments generated to that
pixel. Multiple versions have been released since. Most of
them use buffers with limited storage.

In contrast the S-buffer by Vasilakis et al.[18] does not
rely on linked-lists or fixed-array structures, but uses two
passes. We need the additional rendering passes to de-
termine the sizes of the buffers. As the result of this algo-
rithm, we get two buffers. The first buffer contains the data
we need (in our case the IDs of the particles participating
in the simulation), the second one is called node buffer,
contains offset information for every vertex, indexing into
the first buffer. The first rendering pass is a fragment count
pass, in which we obtain per-pixel fragment counts for al-
locating the exact amount of memory that we shall need.
The second step is to compute a prefix sum on the frag-
ment counts. This helps generate the locations of buffer
ranges that belong to individual pixels in the node buffer.
In the third step, which is also a rendering pass, we fill up
the data buffer with the help of the result from the second
step.

3 Our proposal in detail

3.1 Driving force

In our proposed solution, similar to the approach described
in section 2.3 by Fattal et al.[3], a driving force make the
particles fill the mesh. However in our case this force is a
special form of the pressure force. The pressure force ac-
cording to basic smoothed-particle hydrodynamics is cal-
culated depending on the near fluid particles. In contrast
the driving force is calculated from special control parti-
cles instead of the regular fluid particles. Therefore, ev-
ery regular fluid particle has two pressure-like forces. One
derived from other fluid particles as usual, and one de-
rived from the control particles. The simulation and con-
sequently the evaluations are performed only on the fluid
particles so the position of the control particles do not de-
pend on the fluid simulations. The position of the control
particles can be constant or can be animated externally,
e.g. using skeletal animation. To calculate the driving
force the control particles must have a pressure value. Let
us call this pressure the control pressure. This value is an
arbitrary chosen constant. A well-chosen control pressure
makes an artificially low-pressured volume that attracts

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



fluid particles to equalize the pressure difference. How-
ever, if the control pressure is too high, then the simula-
tion can become unstable. This is due to forcing a density
on the particles that exceeds multiple times the rest density
and the parameters of the fluid simulation are defined to be
stable within a given pressure range that should not be ex-
ceeded even with the added control force. The smoothing
kernel of the driving force can be the same as the one used
to compute the pressure force, or its support radius may be
larger. In this case the control particle has a greater range
of interaction and attracts more fluid particles. So, on the
one hand, with the increased support radius, the control
particles can more easily interact with the fluid particles,
but, on the other hand, the structure of the fluid particles
will be smoother and less detailed than the structure of the
control particles.

3.2 Placement of the control particles

The control particles attract the fluid particles as described
in the section 3.1. Therefore, if a volume is filled with
control particles and there are fluid particles near enough,
then the filling of the volume with fluid particles is done
by the driving force during the simulation. The maximum
range of the driving force equals to the support radius
of the used smoothing kernel. Therefore, the interaction
range between fluid and control particles can be changed
by the manipulation of the support radius. To ensure the
required proximity of fluid and control particles, it is an
obvious option to submerge the control particle structure
into the fluid at first. Thereafter, when it is filled with fluid,
it is safe to move the control particle structure further away
from the rest of the fluid. In any case, managing proximity
is the responsibility of the application.

The volume to be filled by control particles is the inside
of the given control mesh. The distribution of the control
particles inside the mesh should be uniform for smooth
simulation. The density of the control particles multiplies
the effect of the control pressure. Therefore, if the den-
sity and the control pressure are too high, instability in the
simulation is more likely to occur. The ideal case would
be that the mesh is filled with as many control particles as
possible and the control pressure is as low as can be while
the derived driving force is still able to compensate the ex-
ternal forces of the fluid, like the gravitational force. Of
course, too many fluid or control particles result in com-
putationally expensive simulation.

There are multiple ways to fill a mesh with particles.
One of the simplest options is to place the control par-
ticles on the vertex positions. The benefit of this option
is the low performance impact. The disadvantage is the
poor reliability because the distance and the density of the
control particles depend on the input mesh. If the uni-
form distribution of the vertices is not provided, the areas
with high vertex density will attract more fluid particles.
This phenomenon deforms the fluid representation of the
mesh. Furthermore, this option places control particles ex-

clusively on the surface of the object. Therefore, the fluid
can cover only the surface of the given mesh during the
simulation. In our tests, this technique has worked well
with carefully chosen meshes as expected.

Another option is to generate random points inside the
given mesh with uniform distribution. The number of in-
tersections between a ray and the mesh indicates whether
the origin of the ray is inside or outside of the mesh, if
the mesh is manifold as required. This method can be
used to filter out generated points outside of the mesh by
casting random rays from all points. This operation must
be applied before the start of the simulation because the
evaluation of intersections can be computationally expen-
sive, and, due to the randomness, GPU implementations
are not trivial. In our experiments, this process caused a
long setup time but the placement had no performance ef-
fect during the simulation and the density of the control
particles was independent from the resolution of the mesh.

The triangle–ray intersection can be replaced by render-
ing. If the mesh is rendered in a way that all the depth
information is stored, the intersections along the rays orig-
inating from the camera can be reconstructed. The res-
olution of the render is important because for points that
project between pixels the depth values must be interpo-
lated from the data stored for neighboring pixels. Fur-
thermore, the stored depth values can be used to generate
points without random number generation. The points can
be placed along the rays of the render between surface in-
tersections inferred from the stored depth values. For an
isotropic point set, the distance between points sampled
along the ray must match the distance between the rays
and the projection of the render must be orthographic to
ensure the parallelism of the rays. The advantage of this
option is that it is fast enough to be used in every frame. Of
course if the mesh is not deformed, then the transformation
of the mesh can be used on the control particle structure as
well, without re-generating them in every frame. However,
if the mesh is deformed, like in the case of skeletal anima-
tion, the procedural animation of the control particles is
complex. A simple procedural solution is to generate the
control points every frame with this placement option.

3.3 Morton sort

One of the most computationally expensive parts of the
simulation is finding the particles that are near enough to
affect the simulated particle. The simulation presented in
this paper applies Morton sort to find neighboring parti-
cles. Morton sort orders points according to their bitwise
interleaved coordinates, thus organizing them into a three-
dimensional discrete curve. The three-dimensional space
is discretized and mapped to a one-dimensional sequence
by the Morton curve. The binary coordinate representation
has to be adjusted to the bounding box of the simulation.
If the bounding box of the simulation is changed, then the
Morton curve can be easily re-adjusted. If the Morton in-
dex uses the longest possible binary range then the likeli-

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



hood of index collision can be reduced. A more complex
way of handling index collision is not necessary because
the result of the search is not affected and the performance
impact is minimal. The particles can be ordered in paral-
lel by using odd-even sort according to the calculated in-
dex. A given particle position and a search range define a
sphere. A minimal bounding box that contains the sphere
can be determined easily. If both the bounding box and
the Morton curve are axis aligned then the minimum and
maximum Morton index inside the bounding box equals to
the Morton index belonging to the position of two specific
corners of this bounding box. Therefore, it is enough to
search the particles in the one-dimensional array between
these minimum and maximum Morton indices.

3.4 Surface reconstruction using metaballs

We reconstructed the implicit surface using the metaballs
field function introduced by Wyvill [5]. We implemented
two different fluid visualizations based on ray-marching.
The faster one colors the implicit surface of the metaballs
with its normal. This method executes the ray-marching
until it intersects the implicit surface first, where the sur-
face normal is evaluated. The other visualization presents
the structure of metaballs as if it was made out of water.
This requires recursive ray-marching. If an intersection is
reached during the ray-marching, then the marching con-
tinues in both the refracting and reflecting directions. The
recursion ends if the ray escapes the bounding box of the
fluid or the depth of the recursion has reached the specified
threshold. In both cases, the environment map is evaluated
in the direction of the last march step and composited to-
gether depending on the Fresnel function of water. Ray-
marching can benefit from the acceleration options after
reflection or refraction, too, if the current marching posi-
tion is back-projected to the screen. Furthermore, we im-
plemented the A-buffer and S-buffer accelerations options
in order to compare them.

3.4.1 A-buffer

In the first step a billboard is placed at every metaball lo-
cation. The size of the billboard is chosen to match the
range of the metaball. Instead of storing the color and
opacity values as usual, the ID of the metaball is stored
in the linked list. During ray-marching, when testing for
the implicit surface, instead of iterating through all meta-
balls, the shader only tests the filtered metaballs that are
stored in the corresponding linked list.

3.4.2 S-buffer

Similar to the A-buffer a billboard is placed at every meta-
ball location in the same way. The S-buffer does not use
linked lists, therefore only the number of billboards are
counted per pixel in the first render. The second step is

to execute a parallel prefix sum on the result of the previ-
ous step. The billboard counts after the prefix sum are the
indices for storing the input values of the S-buffer. There-
fore, in the last step the billboards are rendered again and
the IDs of the billboards are stored according to the pre-
fix summed indices. Ray-marching gains the advantage of
the filtered metaball list in this case, too, but the IDs are
not stored separately like in the linked lists, because the
S-buffer stores the IDs sequentially. The adding of an ex-
tra rendering step is compensated by the improved cache
coherence of the sequential memory usage.

4 Results

We have implemented our simulation system using the
C++ programming language with DirectX 11 API for ren-
dering. The simulation was tested on a Windows PC with
32 GB of RAM and an Intel 4790k processor, using an
NVIDIA GTX 1080 Ti graphics card with 11 GB of video
RAM.

Table 1 shows the measured frames per second in var-
ious setups. There are eight different scenes. The first
scene does not contain any control mesh, therefore only
the visualization is computed. The next two scenes can
be seen in the second row of Figure 1 and in Figure 2.
These scenes present a character with and without anima-
tion. The first row of Figure 1 shows the fourth scene. It
contains a giraffe mesh. The last four scenes use the same
drake mesh. The sixth and seventh scene contain 4096
fluid particles, the rest contain 2048. The sixth scene is
rendered from double distance. The eighth scene is visu-
alized with double sized metaballs, and consequently the
billboard sizes are doubled, too. The figure below the title
presents the seventh scene, where the control constraints
are suddenly turned off. The first column of the table in-
dicates whether the scene is presented with the gradient
shading or with the ray tracing method. The third col-
umn presents the depth of the recursion during ray trac-
ing. The fourth column shows that how many binary steps
are applied for more accurate intersections. The last three
columns show which acceleration method was used. The
giraffe mesh was filled with 3400 control particles, the
drake with 8000, the character between 2700 and 3000 de-
pending on the animated pose. The resolution of the ren-
dered images are 512x512. In the shown test scenes the
gravitational force was turned off for fluid particles that
were affected by the control force, to help the fluid parti-
cles fill the mesh faster.

5 Conclusions

By varying the control mesh various interesting scenes can
be produced with the help of the presented technique. The
opaque visualization is real-time in most of the setups, but
recursive ray tracing is slow if the recursion is too deep.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Fluid visualized using gradients as colors, with recursive ray tracing, and with the flat shaded control mesh
superimposed.

Figure 2: Frames of a character animation sequence using an animated control mesh, with the fluid surface visualized
using gradients as colors

The acceleration options proved successful with reason-
ably small metaball ranges. In case of ray tracing the more
significant acceleration is due to the multiple readings of
the created per-pixel structures. Based on the measure-
ments visualization takes most of the frame time.

With the high parallel computing capacity of modern
video cards it is possible to use particles not only to repre-
sent the fluid but also for flow controlling purposes. This
paper demonstrates that voxel based approaches to rep-
resent spatial densities can be replaced by control parti-
cles. These control particles can be placed and applied ef-
ficiently enough to be used in real-time applications. Fur-
ther research could increase the advantages of control par-
ticles over voxel based structures. For example, with the
direct animation of the control particles the reiteration of
the placement step could be avoided. In this case the ve-
locity of the animated control particles could be used as a
vector field to improve the tracking ability of the fluid.

5.1 Limitations

Without canceling the external forces conditional on the
magnitude of the control force, it was difficult to find a
proper support radius and control pressure for every dif-
ferent scene. Therefore, an algorithmic definition of these
constants would greatly improve the usability of our tech-
nique.

References

[1] James F Blinn. A generalization of algebraic sur-
face drawing. ACM transactions on graphics (TOG),
1(3):235–256, 1982.

[2] Loren Carpenter. The a-buffer, an antialiased hid-
den surface method. In Proceedings of the 11th an-
nual conference on Computer graphics and interac-
tive techniques, pages 103–108, 1984.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



Visual Scene Rec. Bin. Norm A-Buff S-Buff
Grad No Mesh 1 3 10 26 29-30
Grad Character 1 3 9-10 25-26 28-30
Grad Anim.Char. 1 3 9-10 25-26 28-30
Grad Giraffe 1 3 9-10 25-26 28-30
Grad Drake 1 3 9-10 25-26 28-30
Grad Drake 4k,2d 1 3 8-9 20 20
Grad Drake 4k 1 3 4-5 9-10 14-15
Grad Drake 2b 1 3 9-10 12 9-10
Real No Mesh 2 2 4 10 14-15
Real Character 2 2 3-4 9-10 14-15
Real Anim.Char. 2 2 3-4 8-10 13-15
Real Giraffe 2 2 3-4 9-10 14-15
Real Drake 2 2 3-4 9-10 14-15
Real Drake 4k,2d 2 2 3-4 11-12 14-15
Real Drake 4k 2 2 1-2 3-4 7-8
Real Drake 2b 2 2 3-4 4-5 4-5
Real No Mesh 4 3 2 5 9
Real Character 4 3 1-2 4-5 8-9
Real Anim.Char. 4 3 1-2 4-5 7-9
Real Giraffe 4 3 1-2 4-5 8-9
Real Drake 4 3 1-2 4-5 8-9
Real Drake 4k,2d 4 3 1-2 4-5 4-5
Real Drake 4k 4 3 0-1 0-1 4-5
Real Drake 2b 4 3 1-2 2 1-2

Table 1: Scene and optimization scheme comparison mea-
sured in frames per second

[3] Raanan Fattal and Dani Lischinski. Target-driven
smoke animation. In ACM SIGGRAPH 2004 Papers,
pages 441–448. 2004.

[4] Nick Foster and Dimitris Metaxas. Controlling fluid
animation. In Proceedings Computer Graphics In-
ternational, pages 178–188. IEEE, 1997.

[5] Wyvill Geoff and Wyvill Brian. Data structure for
soft objects. The visual computer, pages 227–234,
1986.

[6] Jeong-mo Hong and Chang-hun Kim. Controlling
fluid animation with geometric potential. Com-
puter Animation and Virtual Worlds, 15(3-4):147–
157, 2004.

[7] Kei Iwasaki, Yoshinori Dobashi, Fujiichi Yoshimoto,
and Tomoyuki Nishita. Real-time rendering of point
based water surfaces. In Computer Graphics Interna-
tional Conference, pages 102–114. Springer, 2006.

[8] Yoshihiro Kanamori, Zoltan Szego, and Tomoyuki
Nishita. GPU-based fast ray casting for a large num-
ber of metaballs. In Computer Graphics Forum, vol-
ume 27, pages 351–360. Wiley Online Library, 2008.

[9] Micky Kelager. Lagrangian fluid dynamics using
smoothed particle hydrodynamics. University of
Copenhagen: Department of Computer Science, 2,
2006.

[10] Charles Loop and Jim Blinn. Real-time GPU ren-
dering of piecewise algebraic surfaces. In ACM SIG-
GRAPH 2006 Papers, pages 664–670. 2006.

[11] William E Lorensen and Harvey E Cline. March-
ing cubes: A high resolution 3d surface construc-
tion algorithm. ACM siggraph computer graphics,
21(4):163–169, 1987.

[12] Hitoshi Nishimura. Object modeling by distribution
function and a method of image generation. Trans
Inst Electron Commun Eng Japan, 68:718, 1985.

[13] Tomoyuki Nishita and Eihachiro Nakamae. A
method for displaying metaballs by using bézier clip-
ping. In Computer Graphics Forum, volume 13,
pages 271–280. Wiley Online Library, 1994.

[14] Robert W Sumner, Johannes Schmid, and Mark
Pauly. Embedded deformation for shape manipula-
tion. In ACM SIGGRAPH 2007 papers, pages 80–es.
2007.

[15] László Szécsi and Dávid Illés. Real-time metaball
ray casting with fragment lists. In Eurographics
(Short Papers), pages 93–96, 2012.

[16] Wladimir J van der Laan, Simon Green, and Miguel
Sainz. Screen space fluid rendering with curvature
flow. In Proceedings of the 2009 symposium on Inter-
active 3D graphics and games, pages 91–98, 2009.

[17] Kees van Kooten, Gino van den Bergen, and Alex
Telea. Point-based visualization of metaballs on a
GPU. University of Groningen, Johann Bernoulli In-
stitute for Mathematics and . . . , 2007.

[18] Andreas Vasilakis and Ioannis Fudos. S-buffer:
Sparsity-aware multi-fragment rendering. In Euro-
graphics (short papers), pages 101–104. Citeseer,
2012.

[19] Mark Wiebe and Ben Houston. The tar monster: Cre-
ating a character with fluid simulation. In ACM SIG-
GRAPH 2004 Sketches, page 64. 2004.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)


