
Skeletal Animation in a Shading Atlas Streaming environment

Florian Komposch BSc∗

Supervised by: Dipl.-Ing. Philip Voglreiter BSc†

Institute of Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

This paper describes a solution to integrate skeletal anima-
tion and animated hierarchical transformations into a high-
quality Virtual Reality environment. As a base framework,
we use the Shading Atlas Streaming environment. In con-
trast to widely available Virtual Reality systems, Shad-
ing Atlas Streaming decouples server side rendering and
display tasks on the client. Rather than transmitting pre-
computed images, Shading Atlas Streaming uses a combi-
nation of potentially visible geometry and shading infor-
mation which it transmits in an asynchronous fashion.

Since the client actually renders the currently visible
geometry and directly applies shading information from
the atlas, potential network delay and bandwidth limita-
tions may generate occlusion artifacts for animated scene
content when using a straight-forward approach. Further,
client display frame rates are much higher than the server
update rates by design. For animations to work properly,
we need to account for appropriate interpolation.

We introduce an animation system that is capable of
dealing with the asynchronous behavior of Shading Atlas
Streaming and provides smooth animations on the client,
irregardless of the frame rate of the server update rate.

Due to the comparably low capabilities of modern Vir-
tual Reality headsets, our approach must incur only a small
performance footprint on the client. We approach this by
linearization of animations and a completely GPU-based
implementation of the skeletal animation system.

The system is designed to perform the main animation
workload on the typically high performance server PC and
leaves the client with only one additional interpolation task
for frame rate upsampling.

Keywords: Rendering, Animation, Skeletal Animation,
Virtual Reality, Shading Atlas Streaming, Vector Stream-
ing, Vulkan

∗florian.komposch@student.tugraz.at
†voglreiter@icg.tugraz.at

1 Introduction

Animated content is a staple feature in computer graphics
applications. With the recent trend towards Virtual Reality
(VR) in both research and industry, new concepts for sat-
isfying the ever rising display capabilities were presented.
With higher frame rates and resolutions and the trend lean-
ing towards wireless display devices, simple image trans-
mission [9] and client side interpolation become increas-
ingly difficult due to both the computational demand on
the Head Mounted Displays (HMD) and the bandwidth
limitations.

New concepts, such as Shading Atlas Streaming (SAS)
developed by Mueller et al. [6], attempt to alleviate these
issues by decoupling content generation and client dis-
play. Traditional VR applications send a constant stream
of pre-rendered images to the client, which then performs
image-based upsampling tasks. In contrast, SAS computes
a potentially visible set of geometry for a short time frame
into the future, and also generates shading information for
that visible set. The shading information is stored in an
Atlas that is, alongside the visible set, transfered to the
HMD. The HMD then rasterizes the potentially visible set
and directly texture maps the Atlas information instead
of performing computationally expensive shading opera-
tions. The authors show that this can drastically reduce
the bandwidth since the server does not need to exhibit an
update rate as high as with image based approaches.

However, this complicates the implementation of ani-
mation systems. Traditional image-based approaches to
VR do not need any additional effort for animated objects,
since all animations are implicitly interpolated along with
the rest of the image information. For distributed environ-
ments, such as SAS, we present a system that integrates
well with asynchronous frame rates, latency hiding and
frame rate upsampling on the client.

1.1 Skeletal animation theory

Skeletal animation is a technique to intuitively deform
and animate 3D models. It relies on a hierarchical trans-
formation concept that links joints (or bones) with addi-
tional blend parameters for complex, yet smooth anima-
tions. Since skeletal animation is commonly used in game

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: On the left, ”T” pose and on the right a deformed
skeleton, with skin applied depicted by Jason Gregory [3]

engines we summarize used concepts from Gregory et al.
[3].

Skeletal animation is typically prepared in two stages.
In the rigging stage, a hierarchical structure is generated.
This structure closely resembles a skeleton consisting of
bones, especially in natural objects such as human char-
acters, and is named likewise. Each joint in this skeleton
describes a relative transformation to its direct ancestor in
the hierarchy and the related subspace.

It is necessary that the rig is designed to fit with the
corresponding mesh in order to generate comprehensible
animation outputs.

The second creation stage is the skinning process,
which connects vertices of the mesh with bones of the rig
and defines weights with which each bone influences a
vertex during animation. Various techniques exist, includ-
ing manual processing, least square distance approaches
or comparably complex algorithms like James and Twigg
[4] described for skeleton and skinning estimation in large
scale scenes.

In theory, vertices of a mesh could have different bone
counts, but are often limited to a fixed count for efficient
GPU implementations.

A skin is applied to a skeleton in its bind pose, also
referred to as ”T” pose. The bind pose defines the state
in which the model is not deformed by the initial skele-
ton. To ensure this behavior and further grant an efficient
skeleton evaluation a bind offset is generated. This offset
is the inverse of the initial bone to world transformation. It
is applied in the bone evaluation step to counter transfor-
mations which would be applied through the initial bone
position.

Most animation engines implement an additional offset
layer in bone space such that the initial bone position can
differ from the bind pose. The bind pose is designed to en-
sure a simple binding procedure, but is usually not directly
used in the animation process.

Figure 1 shows an example of a bind pose and an eval-
uated animated position.

Using the offset layer, a model can be bound to the same
rig with various initial positions, for example in time-

shifted animations or deformations that were not originally
intended. This also allows animators to reuse skeletal ani-
mations without repeating the rigging process.

Another advantage is that different models could have
the same animation with just separate skinning informa-
tion, which is also a key element of the work James et al.
[4] proposes.

Moreover, animation systems can provide many more
additional features. They could support animation
blending or may also include warping to different rigs as
described by Gregory et al. [3]. While we do not directly
support such features and the resulting combinatorial
complexity, implementing them into our system is mostly
straight forward.

We instead focus on a typical animation engine which
comprises two stages. The update stage is usually de-
coupled from the rendering or presentation stage to allow
asynchronicity of animation updates and rendering frames.
In the update stage, the skeleton is evaluated with the cor-
responding timestamp via a recursive walk through the hi-
erarchy.

In the render stage, the updated matrices are used in
combination with the skinning and bone offset data to
transform all animated vertices according to the updated
skeleton.

1.2 The Shading Atlas Streaming (SAS) en-
vironment [6]

In modern virtual reality (VR) systems, it is common that a
high-end pc is combined with tethered VR headsets. The
PC acts as a server and streams pre-generated images to
an HMD client. In light of recent development and the
demand for wireless solutions, the main bottleneck in this
approach is limited data transfer between the participants.

Therefore, a tradeoff between quality and latency must
be solved depending on the application’s purpose.

Some approaches use all-in-one VR headsets that do
not suffer the transfer restrictions, but lack computational
performance and visual quality.

As both of those technologies have drawbacks, SAS
aims to deliver a solution that combines both concepts so
that the resulting VR experience is enhanced. A precon-
dition of this approach is to maintain high quality while
limiting the transmission bit rate.

The SAS framework developed by Mueller et al. [6]
serves as the baseline for our implementation. As previ-
ously mentioned, the server performs visibility and shad-
ing passes to prepare the scene information. Then the
client rasterizes the scene again but utilizes visibility and
shading information from the server. To achieve a low
client GPU load, the server generates object-space shad-
ing information for each triangle potentially visible in the
near future. To estimate the near future visible set, sev-
eral future view points are predicted and the resulting ex-

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

actly visible sets from each view point are combined into
a potentially visible set. This also incorporates animation
information for each of these view points. The client re-
ceives the entire potentially visible set, which allows for
small movement or rotation within the resulting view cell
without requiring updated information.

Further, the server generates and transmits the shad-
ing information of all geometry in the potentially visible
set. This is done as an object-space shading method uti-
lizing the Shading Atlas. The Shading Atlas is divided
into patches, which are groups of one to three triangles.
This considers temporal coherence and can be efficiently
encoded using standard H.264 encoding [11] for network
transfers.

The client efficiently texture maps the atlas information
on the geometry of the potentially visible set without in-
voking expensive fragment shader operations.

With this, the SAS approach delivers higher quality ren-
derings in comparison with all-in-one VR solutions and at
lower bandwidth requirements. Further, since the client
rasterizes the potentially visible set locally, no occlusion
artifacts are generated like in comparable image-based
rendering (IBR) VR systems. Additionally, the client is
not bound to the server frame rate and can perform frame-
rate upsampling with the given data as long as the HMD’s
viewpoint changes are within the margin of the potentially
visible set.

2 Related Work

This project combines interactive streamed VR content
and skeleton animation. It is directly related to VR remote
rendering and local animation systems.

Remote rendering is described by Shi et al. [12] as ren-
dering 3D graphics on a server system and displaying the
results on a client device. The decoupling adds an addi-
tional transmission layer which introduces limitations like
bandwidth and latency. Those limitations are especially
relevant in an interactive real-time environment like VR.

There are different approaches to challenge those limita-
tions. For example, Image Based Rendering is widely used
to approach the latency of high-quality image transfers by
generating intermediate images by warping old ones with
the latest viewport. To allow the warping with different
views the image has to be in a super-resolution. Those
approaches are designed for animated or interactive views
but do not account for animated scenes.

A highly distributed approach is asynchronous time
warping (ATW) described by Oculus [9]. It is not only
used in streaming environments to hide latency like the
Oculus Rift, but can also be used for frame rate upsam-
pling like in the Oculus Quest if the render pipeline does
not meet the expected frame rate.

There are also more complex strategies for real-time
warping, which utilize proxy geometry like Mark et al. [5]

describe in their work. They use a depth image of the last
available frame to generate a simplified geometric proxy
which can be rendered from a new viewpoint. The missing
color information can be generated through the old image.

Oculus presented the technology Asynchronous Space-
warp 2.0 [10] building on the predecessor [8] which uti-
lizes also an additional depth image for synthesizing. This
technology also uses a Positional Timewarp which can
provide six degrees of freedom for the view estimation in-
stead of the predecessors three. With this combination,
Oculus claims to reach good results even if the real frame
rate drops below the halve of the desired one.

There are also systems, which utilizes Pixel Flow in
combination with IBR to synthetic intermediate images,
from Myszkowski et al. [7] to reduce render latency in
high-quality walk-through animated sequences. Parts of
this approach could also be used in a streamed animated
scene as the concepts of movement, time and spatial co-
herence are the same.

Animation systems in general handle transformations in
a scene. Typical animation systems support all kinds of
animation techniques like Rigid Hierarchical Transforma-
tion, Per-Vertex Animation or Morph Targets. Skeletal an-
imation is an additional common concept for animation,
especially in character animation. As a reference, we used
the animation engine design presented by Gregory et al.
[3]. It uses keyframe animation applied on a hierarchical
transformation to describe an animated skeleton. A corre-
sponding 3D geometry is bound to that skeleton by a bind-
ing stage. In the update pass, the geometry will be trans-
formed accordingly to the actual skeleton position. The
animation system is further responsible to steer the anima-
tion when to start, stop, time warp or even blend it with
other animations. The system itself is usually controlled
by the actions of a user or can also act as a replay engine
of recorded animations.

3 Animation system integration

This section handles the integration of an animation sys-
tem into the SAS environment.

We describe the loading of animated objects and the
general initialization of the animation system. We then
proceed to describe the integration into the framework in
three steps. The first is a simple forward renderer. This
step does not involve communication to a separate client
and we use it for benchmarking the more complicated pro-
cedures.

In a second step, we describe the integration into the
Shading Atlas engine while using a local client. In the fi-
nal step, we describe the necessary enhancements upon the
previous step when also considering network communica-
tion and asynchronous behavior.

We use the overview presented in Figure 2 to sketch the
server and client implementation to line out which parts
of SAS are successively modified to achieve each of the

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

aforementioned goals.

Prediction, Visibility
send interpolation

data
Object Space

Shading Encoding

Server

Decoding Atlas Shading
Mapping

interpolation

Client

head movement

Figure 2: SAS pipeline overview, with modified stages
highlighted red, the blue sections represent a decoupled
part from the server to perform frame-rate upsampling

3.1 Loading and initializing animated Ob-
jects

All integration steps commonly use a novel Animation-
Manager that has direct access to the scene information
on the server. Since all rendering systems utilize the same
scene geometry, we can directly benchmark the output
in terms of computational performance and visual qual-
ity. All required animation data structures are prepared
for GPU usage and grouped in one AnimationMaterial per
model.

We decided to use Autodesk’s Film Box (FBX) file for-
mat [1] to access animated scenes. The FBX format is
capable of storing substantially more scene information
than simple animations, therefore we preprocess scenes
accordingly during loading. One example would be lim-
iting the number of vertex to bone connections to exactly
four bones, which is a rather common upper bound we
observed. Moreover, we extend the existing loading pro-
cedure which generates intermediate data not saved in the
proxy files, such as levels of detail or tangents. Most im-
portantly, we sample the skeletal animation information
directly form the FBX files. For the purpose of streaming
animation information to the client, however, we require
a linearly sampled representation of all present keyframe
animations.

In general, it is not possible to correctly convert an eval-
uated animated path into a new set of keyframes due to
decomposition artifacts in line with sampling theory. The
number of required samples is comparably large and in-
troduces considerable data redundancy. We further need
to support additional rigid animations of entire models on
top of local skeletal animation. These can be defined in
the original FBX file, again as hierarchical transformation
and we support an additional layer of freedom for scene
generation through a configuration file. This configuration
describes the scene with all its models to load and also a
model matrix path for each model. Through this layer, the
framework allows a presampled rigid animation for each

mesh. However, the rigid animation curve might not be
sampled in sufficient intervals, which potentially leads to
animation artifacts.

The loading procedure culminates in a combination
of mesh and AnimationMaterial. The following proper-
ties of AnimationMaterials are relevant for the rendering
pipeline.

• global animation info1

• animation info2

• saved vertices2

• skeleton:

– skinned vertices
– bone hierarchy meta
– bone hierarchy
– inverse bone offset
– animation meta
– keyframes

The animation system is designed to allow instantiation
of meshes. The animation manager keeps track of the ini-
tialized meshes and detects duplicate skeletons for reuse
throughout the entire scene.

The first, global animation info binding contains the
actual time, an array of all prediction time stamps and the
prediction count. The next two properties, animation info
and saved vertices have to be generated for each individ-
ual model. The Animation Manager handles this through
a model to binding mapping which holds the correspond-
ing vulkan descriptor set. In contrast, the same skeleton
information buffer is used for all models with the same
animated mesh.

The animation info structure describes additional data
used in various shading stages in the server pipelines. That
information includes whether the given animated model
has a skeleton or is only transformed by a hierarchical
transformation define in the FBX file. This structure also
provides additional animation steering data like time shift
or repetition parameters.

The visibility stage draws the whole scene for each pre-
dicted view and saves the visible triangle IDs. This pro-
duces the exact visible set for each predicted viewport and
combines them into a potentially visible set. It is the foun-
dation for future steps in the SAS pipeline like the level of
detail selection in the Shading Atlas. As the evaluated ver-
tex positions will be needed multiple times in the further
pipeline steps we cache them in the saved vertices array.

3.2 Forward renderer

The forward renderer is our test bench and does not use
a server-client model. It draws all models in a standard
render pipeline and directly presents the results on the
screen. This builds an appropriate environment to describe
the skeletal animation in the vertex shader.

1Buffer is global for all models.
2Buffer is model dependent.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Typically, per-vertex information, such as bone bindings
and blend parameters, is provided through vertex attributes
in the vertex shader. However, SAS utilizes a more com-
plex structure of successive stages and we cannot deliver
the necessary data in the traditional way.

The crucial part of the skeletal animation is a list of
bones connected to each vertex and correlated weights.
We use the local vertex index within a mesh as direct map-
ping between the vertex index and its corresponding skin-
ning data in GPU memory.

In the forward rendering pipeline, this is simply ob-
tained by the Vulkan vertex shader built-in variable
gl VertexIndex and the additional vertex offset variable. If
the mesh has a deformer, i.e. it is animated by a skeleton,
the vertex position will be constructed through the corre-
sponding SkinnedVertex entry as described in the Anima-
tionMaterial.

To evaluate the per-vertex bone matrix, all connected
(up to four) bones are evaluated and then combined ac-
cordingly to the per-vertex weights.

The calculation of one bone matrix is done by multi-
plying its local transform with all parent transform until
the root node is reached. Additionally, we need to apply
the bone offset transformation to this whole chain. This
hierarchy is defined in the bone hierarchy meta array
which holds a mapping for each bone to a list of all
its parent bones needed for the evaluation. This list is
hierarchically sorted and enables a GPU implementation
to travers the skeleton in the correct order.

Additionally, bones have a mapping to their corre-
sponding keyframe data and animation start and stop
times. Sampling the keyframes with constant intervals
allows for fast and efficient lookup of this data. Each
keyframe stores local translation, rotation, and scale per
bone. To fulfill rotations SO(3) properties described by
Rausch et al. [2], we interpolate the data as quaternions
and then transform them to rotation matrices for vertex
transformation. We interpolate translation and scale
separately and, in a final step, combine them with the
interpolated rotation. Since the forward renderer does not
use view predictions, the actual server time is used for the
transform interpolation.

Finally, we combine the skeleton-based deformation
with per-model transformation matrices.

The model matrix consists of two parts. The first is
the model matrix added in the configuration file and the
second is the model matrix defined in the FBX scene.
The FBX model matrix is defined through a hierarchical
transformation, which we processed in the animation man-
agers’ initialization, in the same manner as a bone. For
each animated model, we defined one bone hierarchy in-
dex in the animation info, which we use as a model matrix
without the use of a bone offset multiplication.

To use the frameworks configuration file intuitively, the
there defined matrix will be applied at last to transform the

FBX scene model into the configurations desired space.

3.3 Shading Atlas Renderer

The Shading Atlas Renderer features the aforementioned
server-client model, but is implemented as standalone
executables with two distinct parts. In the non-networked
mode, the client accesses the server data via memory copy
and consequentially saves transmission and preprocessing
steps which are described in more detailed in the next
Section 3.4.

The animation system adds a new concept of interpo-
lated vertices to SAS. Interpolated vertices allow client-
side interpolation of each vertex position between server
updates within the range of predicted view points. For
each animated vertex, the server generates separate Inter-
polatedVertex entries per predicted view point.

The client is aware of the associated timestamps and
generates intermediate vertex positions by interpolating
those entries, resulting in a smooth animation, even if the
server update rate is considerably lower than the client
frame rate. However, we cannot extrapolate beyond the
provided predicted view points and require sufficient
server update rates or, alternatively, appropriate predic-
tions, in order to avoid visual artifacts.

Let us first consider the client-side interpolation in
order to understand the resources the server needs to
provide. On the client, the Atlas Mapping Stage rasterizes
the geometry provided by the server and texture maps
the transmitted Shading Atlas without any additional
shading computations. The new animation system adds
the InterpolatedVertices array, a vertex mapping, and
client animation information to this pipeline.

The vertices drawn in this stage are a compact copy of
the visible vertices as computed in the server’s visibility
stage. This implies that a mapping to the interpolated ver-
tex array needs to be generated since the direct affiliation
is lost in the compression step.

The mapping flags non-animated vertices in order to
distinguish them accordingly. Further, the mapping must
be cleared before each server update and hence all values
which are not actively set are considered non-animated.

Client animation information consists of the actual time
and time stamps for which the InterpolatedVertices were
evaluated. With that information, client interpolates the
correct vertex positions during animation.

Let us next discuss the adaptations of the server render-
ing pipeline. In contrast to simple forward rendering, SAS
features multiple stages in order to determine visibility of
geometry and the appropriate Shading Atlas. The most
relevant stages are as follows:

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

• IDBufferStage:
In this stage, the animation material generates the an-
imated vertex positions for each of the multiple pre-
dicted view points and saves them for each mesh in
the corresponding saved vertices array.

• LevelSelectionStage:
The level selection is only called for visible geometry
and therefore the processed vertex index is a vertex
attribute. With the vertex index, the first animated
position can be fetched and forwarded to the shading
stage.

• ShadingStage:
In the non-networked application, this ShadingStage
fills the compact vertex buffer for the atlas mapping
stage. Therefore, this stage is also responsible to
create the entries in the InterpolatedVertices buffer
and the vertex mapping for the final stage. Inter-
polated vertices are generated in parallel and sorted
through an atomic counter. The vertex positions are
acquired through the saved vertex positions array and
the atomic counter value is the corresponding map-
ping value.

3.4 Shading Atlas Networked Renderer

The Shading Atlas Networked Renderer extends the previ-
ously described pipeline by adding an additional network-
ing component. Since no direct access to the server data is
available, the server sends both geometry information and
the Shading Atlas, and the client consequentially needs to
process this data before displaying.

As the networking is only simulated in this renderer,
the data to send will only be copied into new arrays and
then preprocessed as if it would actually be sent over a
network. However, it also allows us to simulate network
properties such as latency or transmission rates.

The additional animation information mostly affects
transmission of geometry. SAS uses a VertexSend mes-
sage that contains a vertex position and its index for in-
direct rendering. This message is sent for all visible ver-
tices after the LevelSelectionStage finishes computation.
This induces that, for each predicted view point, we need
to send the correlated animation information for each ani-
mated vertex.

Rather than single vertices, the server sends compact
arrays of multiple vertices that are reconstructed into ren-
derable meshes on the server.

It is not practical to generate the same structure for the
animated vertices since we cannot use the animated ver-
tex data after the next server update. For each visible an-
imated vertex, the predicted vertices are sent as a com-
pact VertexMessage array. At the end of this message, the
timestamps for the predictions are appended.

This results in the same array generated in the non-
networked shading stages, we called the InterpolatedVer-

tices. To generate the mapping between the vertex index
and interpolation data, we need to process all interpolation
messages and build a mapping between their index and the
vertex position in the model.

Next, the client preprocessor generates its local draw
buffer and utilizes the mapping to create a compressed an-
imation mapping that correlates with the received visible
vertices. In the final atlas mapping stage, we can use the
gl VertexIndex to access the mapping to the presampled
vertex positions, for interpolation with the actual client
time.

4 Results

We performed all tests on a Windows desktop PC (NVidia
GeForce RTX 2080 Super GPU, 8 GB VRAM, Intel i7-
8700k CPU 4.2 GHz, 32 GB RAM). We observed that
0.7GB GPU memory was used by the system and there-
fore only 7.3 GB remained for the application.

All tests use a square resolution of 1300 pixels with 90◦

FOV. In comparison to Mueller et al. [6] we do not test
with standard game scenes, but rather want to push the
limits of the animation system artificially.

The foundation for the test scene is an animated dragon
mesh, which will be instantiated multiple times to stress
the system.

The dragon mesh contains 22k vertices which form 38k
triangles. The mesh maps to 136 bones which are ani-
mated over a four seconds time interval, which we loop
infinitely. We use a 100ms sampling interval, leading to
4660 keyframes per loop. We instance the dragon model
along a three dimensional grid in order to stress the system
further.

First, we measure the performance of the system with-
out any animation integration as baseline. This allows us
to compute the pure performance loss owed to the the an-
imation systems.We provide the FPS measurements of the
server and client to display the performance losses on each
part of the system. These measures are depicted in Table
1, comparing scene one on the non-animation base system
and animated version.

Scene two runs on the same grid but only with the ani-
mated version of the dragon. The results were tested from
a static view depicted in Figure 3, with a viewing distance
chosen that all dragons per test are visible.

If the animation system is used without animations, the
system drops between 30 and 10 percent of its possible
frames on the server and up to 20 % on the client. This
performance drop is due to additional memory allocation
and checks if animations have to be performed per vertex
on the client.

Since the CPU system runs asynchronously with the
GPU implementations some staged executions are stalled
due to linear dependencies on previous invocations. We
recognize the client frame rate drop at 81 dragons in the

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

FPS
Dragons Server Client

Static S1 Animated S1 Animated S2 Static S1 Animated S1 Animated S2
9 138 98 38 370 355 370

25 129 73 20 322 341 330
49 108 86 11 266 302 255
81 86 70 7 239 220 230

121 69 49 5 67 60 190
169 52 49 3 47 38 150

Table 1: Depicting FPS results on a static and an animated scene; Static S1 represent the server base line

non-animated state, hinting at a general hardware over uti-
lization for specific pipeline stages.

Figure 3: Testing view, and close up

For our test, we compute three view predictions that are
33 ms in the future, generating 100 ms time frame in which
the animated scene components can be interpolated on the
client without any additional server information.

We observe that the highest possible server update rates
drop significantly in proportion to the number of animated
objects since each animated vertex evaluates its corre-
sponding bones without reusing previously computed re-
sults. Figure 4 depicts the table values of the test scenes
as diagram. We can use the animated test scenes curves to
identify how many animated vertices can be utilized before
the server frame rate drops too low for practical usage.

0

75

150

225

300

375

9 25 49 81 121 169

F
P

S

Number of dragons

Base server S1

Base client S1

Animated server S1

Aniamted client S1

Animated server S2

Aniamted client S2

Figure 4: FPS Evaluation

Our results directly align with the hardware suggestions
of the original SAS paper. While the server suffers be-
yond a certain number of animated vertices, the client
maintains a high frame rate. This comes at the fact that

also model matrix changes are transmitted via interpolated
vertices which can be evaluated on the client more effi-
ciently than the current model matrix implementation of
the framework.

If the server and client run on separated hardware, per-
formance drops through resource struggles are bypassed
and by computing enough predictions the update time on
the client can also be bridged.

The biggest limitation for the system is the data trans-
mission rate between the participants. Adding more view
point predictions increases the number of samples for ani-
mated vertices. In its current state, this results in an addi-
tion of 48bytes per visible animated vertex per prediction
frame.

Interpolation error We need to subsample the animation
curves twice in our system, first in the FBX preprocessing
and again on the client between server predictions. Since
we do not want to excessively oversample the animation
curves, this induces minor deviations. We evaluate this er-
ror where at its maximum, which coincides with the origi-
nal keyframes of the input file.

For our dragon skeleton, the maximum error values are:
translation= 2.57%, rotation= 2.54% and scale= 0.2%.
To evaluate the client-side sampling error we use the same
server prediction rate as in the performance tests and eval-
uate the same timestamps again. With this procedure, we
reach an accumulated translation = 2.31%, rotation =
6.32% and scale = 0.66% loss compared to the original
animation curves. These errors are comparably low and
visually barely detectable.

Animation tearing artifacts The interpolation concept
on the client introduces a new dependency between server
frame rate and prediction time delta. If these do not fit to-
gether, the sampled animation from the server update will
not match the previously sampled animation present on the
client. This will introduce animation tearing artifacts be-
tween two subsequent server updates since they obviously
do not fit together. This effect is strongly visible if the pre-
diction time is way higher than the server frame rate. The
linear client interpolation between the predicted position
will not be close enough to the actual updated vertex po-
sition evaluated on the server. This could be tackled by

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

a smooth updating procedure to the arriving interpolated
vertex data but would additionally distort the animations.

At the moment this can not easily be implemented as the
server-client time synchronization turns out to be problem-
atic. In this distributed environment it is hard to exactly
synchronize between server prediction and actual client
time, even if the delays generated through transmission,
preprocessing and displaying are known. Therefore, the
system has to run fast enough that SAS can mask the time
distortion and the server-client updates do not diverge.

5 Conclusion, Future Work

In this paper, we described a high-quality skeletal ani-
mation approach for distributed VR environments. We
outlined a method to evaluate skeletal animation directly
on the server to overcome certain hindrances at VR
clients. Through the extension of the framework with
a light-weight client-sided interpolation procedure, we
achieve frame rate upsampling of animated scenes. This
upsampling reduces requirements for server update rates
and guarantee a time-continuous scene representation
on the client. While the current implementation of
InterpolatedVertices allows optimal client frame rates, the
server update rate suffers.

In future work, the system could be enhanced through
a clever animation sampling approach. Also as mentioned
in the previous section the update functionality of the an-
imation system could be reworked to improve server per-
formance. Other bone matrix update approaches could be
introduced which are skeleton depending in comparison to
the per-vertex variant we choose for the actual implemen-
tation.

To reduce animation tearing artifacts, a client-sided
round robin system for the animated vertex positions could
be introduced which also would save data transfer if pre-
dictions are overlapping. This could be further used as a
method to reduce the demand for sending animated ver-
tices for all predictions at once and would additionally
hide latency.

References

[1] Inc. Autodesk. Autodesk, FBX Adapt-
able file format for 3D animation software.
https://www.autodesk.com/products/fbx/overview,
2019. Visited January 30, 2020.

[2] Rutwig Campoamor-Stursberg and Michel Rausch
de Traubenberg. Group Theory in Physics. WORLD
SCIENTIFIC, 2018.

[3] Jason Gregory. Game Engine Architecture, Second
Edition. A. K. Peters, Ltd., Natick, MA, USA, 2nd
edition, 2014.

[4] Doug James and Christopher D. Twigg. Skinning
mesh animations. ACM Trans. Graph., 24:399–407,
07 2005.

[5] William R. Mark, Leonard McMillan, and Gary
Bishop. Post-rendering 3d warping. In Proceedings
of the 1997 Symposium on Interactive 3D Graphics,
I3D ’97, page 7–ff., New York, NY, USA, 1997. As-
sociation for Computing Machinery.

[6] Joerg H. Mueller, Philip Voglreiter, Mark Dokter,
Thomas Neff, Mina Makar, Markus Steinberger, and
Dieter Schmalstieg. Shading atlas streaming. ACM
Transactions on Graphics, 37(6), November 2018.

[7] Karol Myszkowski, Przemyslaw Rokita, and Take-
hiro Tawara. Perceptually-informed accelerated ren-
dering of high quality walkthrough sequences. In
Dani Lischinski and Greg Ward Larson, editors, Eu-
rographics Workshop on Rendering. The Eurograph-
ics Association, 1999.

[8] OculusVR. Asynchronous Spacewarp.
https://developer.oculus.com/blog/asynchronous-
spacewarp/, 2016. Visited January 30, 2020.

[9] OculusVR. Asynchronous Timewarp.
https://developer.oculus.com/blog/asynchronous-
timewarp-on-oculus-rift/, 2016. Visited January 30,
2020.

[10] OculusVR. Asynchronous Spacewarp 2.0.
https://www.oculus.com/blog/introducing-asw-
2-point-0-better-accuracy-lower-latency/, 2019.
Visited January 30, 2020.

[11] Iain Richardson. H.264 and mpeg-4 video compres-
sion : video coding for next-generation multimedia
/ iain e. g. richardson. SERBIULA (sistema Librum
2.0), 01 2004.

[12] Shu Shi and Cheng-Hsin Hsu. A survey of interac-
tive remote rendering systems. ACM Comput. Surv.,
47(4), May 2015.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

