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Abstract

Wired VR headsets provide high visual quality, but re-
strain movement of the user by being connected to PC
with cable, and untethered headsets have only mobile
GPU, which has relatively low performance. We focus
on providing smooth VR experience without restriction
on movement: high refresh-rate and immediate effect of
head movement on the rendering to prevent motion sick-
ness. Video streaming of rendering provides high refresh-
rate and quality but can also have high latency. In our
approach, the scene is rendered on the server to multiple
layers using depth peeling, packed to texture, and with po-
tentially visible set of triangles streamed to the client. This
method supports temporal frame up-sampling and pro-
vides low latency. Results show that it is a potential alter-
native to existing image-based methods and atlas stream-
ing approaches.

Keywords: Virtual reality, remote rendering, streaming,
low power client, thin client

1 Introduction

The goal of this project is to provide high-quality visual-
ization on mobile devices with relatively low HW perfor-
mance using the utilization of high-performance remote
server for rendering with data streaming over wireless net-
work. We focus on providing smooth VR experience: high
refresh-rate (even with low scene update rate) and imme-
diate effect on the rendering of head movement to prevent
motion sickness.

2 Related work

The most common technique for remote rendering is video
streaming, which provides high refresh-rates and high
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quality with relatively low requirements for transfer band-
width. However, its problem is the latency from requesting
frame to rendering it on the client, which can be more than
100ms due to network communication.

Methods like frame upsampling and image warping can
be used on the client to reduce latency and to provide high
framerates. Many solutions require to send additional in-
formation e.g., depth or geometry in conjunction with the
color information.

Framerate upsampling is a technique to generate addi-
tional frames from already rendered frames without the
need to re-render the whole scene again.

2.1 Potentially Visible Set

Potentially visible set (PVS) is a term usually referring to
occlusion culling algorithms, where candidate set of po-
tentially visible polygons are pre-computed and used to
reduce the cost of frame processing by not rendering non-
visible parts of the scene.

In the remote rendering context, PVS is a set of trian-
gles, which are visible in the current frame and could be
potentially visible in the next frames — to cover camera
movement and rotation until the new scene data arrive.
PVS is useful for reducing rendering cost on the client and
for minimizing the size of transferred data.

PVS can be computed by rasterizing triangle IDs from
multiple predicted camera samples [8] or with a more so-
phisticated method that computes it in the camera offset
space [6].

2.2 Image-Based Rendering

Image-based rendering (IBR) are methods that generate
and render a 3D model from sets of 2D images. In VR,
it can be used to hide latency and as a frame upsampling
method. The most common technique is asynchronous
time warping (ATW) [9], which warps the viewport in-
side an overscanned framebuffer. This works well for ro-
tation but does not handle disocclusions when the view
position has changed. Advanced warping methods use ad-
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ditional information e.g., depth buffer. The depth buffer is
used as a geometry proxy (grid), which is rendered with
perspective texture mapping [7]. That can be costly be-
cause a large number of pixels generates a large number
of primitives. The grid can be reduced by using a coarse
regular grid [3] or by adaptively grouping pixels into co-
herent blocks [2] [4]. These methods are an approximation
of the true warp but provide higher performance. Reinert
et al. [10] proposed a method where the server renders
dual views with wide-angle non-linear projection, and the
client renders it using IBR with simplified preprocessed
geometry.

2.3 Object-Space Shading

Object-space shading is an alternative to image-space
shading. It is a technique where shading occurs before
rasterization and can be packed in some way in textures.
Hladky et al. [5] proposed a method that packs shading
of triangles in texture using projection-independent meth-
ods: L-packing and oversampling implemented with tes-
sellation shader and JPEG for compression. Mueller et
al. [8] proposed a method that packs rectangles (pairs of
triangles) with temporal coherence between frames, which
gives the ability to use MPEG compression but needs mesh
preprocessing. Both methods first generate a PVS of tri-
angles.

2.4 Compression

Remote rendering requires some compression, which de-
pends on the rendering technique used and type of data
needed to be transferred. Color can be compressed as a
video stream (e.g., MPEG [8]) if given technique has space
coherency between frames, or as an image (e.g., JPEG
[5]).

3 Architecture

We focus on server-client architecture, designed to have a
high-performance server and a relatively low-performance
client. The server evaluates game logic and pre-renders
part of the scene using the latest camera position provided
by the client, encodes it, and sends it to the client. The data
consists of geometry (triangles) and a texture with packed
shading samples. The client consists of two logical loops
— one for the rendering and one for the scene updating.
The rendering loop repeatedly renders the scene with the
latest view (reprojection of the scene) until the new scene
data arrive. The update loop receives, decodes, and up-
dates scene data in the background. This way, the scene
update rate can be lower than the rendering rate (framerate
upsampling). Communication between the client loops is
asynchronous, and communication between the client and
server is synchronous. The schematic figure of the archi-
tecture is shown in Fig. 1.

Figure 1: Application architecture. Diagram shows execu-
tion loops for the rendering on the client and server, scene
updating on the client and the client-server communica-
tion.

4 Rendering on the server

The server generates a potentially visible set of triangles
(PVS) for the camera view provided by the client. Then
the server renders the approximate scene (PVS) using a
perspective projection. We need all parts of geometry
(fragments) to be stored, and because some parts can be
“hidden” behind others, the server generates multiple lay-
ers of fragments. Layers are not fully covered and can
contain a large number of unused areas. The server divides
layers to the fixed-size tiles (e.g., 8x8px), filters out empty
tiles, and packs others to one texture. The main purpose
of packing is to reduce the transfer size and the client’s
memory usage. The client needs to receive additional data
(block counts) to be able to recover tile positions within
the original layers. Fig. 2 contains a schematic overview
of the method. We implemented the server using OpenGL
with cooperation with CUDA.

PVS

Vertices
(patch)

Color
(JPEG)

Block counts
(RLE + Huffman)

Layers

Pack

Figure 2: Server-side rendering. The server generates
PVS, renders it to the layers, packs to one texture, com-
presses vertices and the texture, and sends it to the client.
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Figure 3: First (left) and second (right) rendered layer.

4.1 PVS

PVS can be created using the algorithm described in Tes-
sellated Shading Streaming [5] or Shading Atlas Stream-
ing [8]. For simplicity of implementation, we choose the
second algorithm — rasterizing triangles from multiple
predicted camera positions and rotations to cover an area
where the client could potentially go within the next few
frames. See Algorithm 1. The client requires a PVS in
the form of vertices transformed into the global space. To
minimize the transport size, we exploit spatial coherency
of vertices and send to the client only the difference (patch)
of the current PVS to the PVS from the previous scene up-
date. Patch is compressed using Huffman coding.

Data: Scene triangles, current camera view
Result: PVS
Predict camera views: current, 4x corners with

constant offset, 2x extrapolate position and
rotation;

Mark all triangles as non-visible;
foreach view ∈ predicted views do

Render scene using wider FOV with pixel
containing the triangle ID;

Mark triangles as visible based on rendered
pixels;

end
Compute new triangle indices using prefix sum;
Collect triangle vertices as a new mesh;

Algorithm 1: Algorithm for creating a PVS for a given
camera view using rasterization on the GPU.

4.2 Layers

The server renders the scene (PVS) using perspective pro-
jection to several layers. We consider a layer as an image
where every pixel contains a fragment closer to the camera
than the next layer. The layer size is computed from the
client’s resolution and an enlarged field of view (FOV). An
example of the first two layers is in Fig. 3.

We implemented method introduced by Yang et al. [11],
we call it fragment linked lists. The method writes all frag-
ments in one pass to per-pixel linked lists and sorts them
in the second pass. Nodes of all lists are stored in a com-
mon array inside storage buffer. The head texture contains
the index to the first node in their lists for every pixel. We
implemented it mostly using OpenGL, with CUDA used
only for fragment sorting.

An alternative method we could use is depth peeling.
This method is often used for order-independent trans-
parency. It works by rendering the scene multiple times
with depth test enabled. Every rendering pass keeps the
nearest fragments with a larger distance than fragments
stored in the previous pass [1].

4.3 Packing

We divide layers to grids of fixed-size tiles. We use the
term block to denote the array of tiles with the same po-
sition within a layer, i.e. tiles that are behind each other
(see Fig. 4). The server computes the number of non-
empty tiles for every block (block counts). Non-empty
tiles are contiguously behind each other (starting from the
first layer) because empty tile cannot exist between two
non-empty tiles.

The server computes a one-dimensional index for every
non-empty tile in a deterministic way. We have two al-
ternative orders of tile indexing: block-first and layer-first
order. In the block-first order, tiles within the same block
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have indices next to each other. In the layer-first order,
tiles within the same layer have indices next to each other
— every layer is fully processed before going to the next
layer. In both cases, blocks are in a row-major order. The
server packs tiles to the texture also in a row-major order,
with position computed from the tile index. The width of
the packed texture can be different from the original layer
width. When we ensure that the first layer is fully covered,
the server packs it in layer-first order even when other lay-
ers use block-first order. The client can skip indirect access
to the first layer and compute location directly.

The client needs to receive block counts to be able to re-
cover original layers or to compute indices for indirect ad-
dressing. The server compresses block counts using RLE
and Huffman coding. We designed the packing method to
effectively support JPEG compression, which uses blocks
of size 8x8px. We implemented packing using CUDA.

A1

A2

B1

A1

B1

A2

Figure 4: Packing of tiles from all layers to one texture
using block-first order.

4.4 Fragment relocation

Continuous geometry (in the sense of distance from the
camera) can be divided between different layers. This pro-
duces edges that are smoothed using JPEG, which leads to
creating artifacts when rendered on the client with differ-
ent camera position — the outline of the front geometry
is visible on the geometry behind on reprojected view (see
Fig. 5). Fragments within the same block can be moved to
different layers to improve depth continuity, keeping the
order of fragments the same. We implemented algorithm
in CUDA, see Algorithm 2. The client needs to receive
pixel mask for packed texture to be able to skip empty pix-

els during rendering or to relocate pixels back during the
scene updating. The mask is compressed using RLE and
Huffman coding.

Figure 5: Comparison of the rendered image on the client
without (left) and with (right) using fragment relocation.
View position on the client is slightly different from the
original position the server used.

4.5 Color filling

After packing to tiles, some pixels remain empty. Filling
them with the averaged surrounding colors improves JPEG
compression quality and reduces the size (less sharp tran-
sitions). We implemented color filling as a color dilation
algorithm using CUDA. Every tile is processed indepen-
dently. The algorithm repeatedly fills empty pixels with
averaged color from 4-neighbors non-empty pixels until
no empty pixels remain. Fig. 6 contains an example of the
filling.

5 Rendering on the client

The client uses OpenGL for the rendering and contains
two logical loops (see Fig. 1). The render loop corre-
sponds to one thread with OpenGL context, and the update
loop consists of two additional threads for communication
and decoding.
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Data: Block
foreach layer ∈ block do

do
collect fragments from the current layer

with:
- depth closer to at least one of 4-neighbors

in next layers compared to the depth of
neighbors in current layer

- has space left - number of remaining
fragments at the same position is lower
than the number of remaining layers;

move collected fragments to the next layer -
this leads to recursive moving all
fragments behind them as well;

replace moved fragments in the current
layer with empty fragment with depth
computed from neighbors from the next
layer

while moved at least one fragment;
end

Algorithm 2: Algorithm for fragment relocation to
improve depth continuity for better JPEG compression
and reprojection quality on the client.

Figure 6: Color filling comparison example: before (top),
after (bottom). Tiles are upscaled (original size: 32x32px).

5.1 Scene Updating

The workload of the render thread needs to be minimized
to achieve stable framerate. For that, OpenGL buffers
are mapped to the client’s memory, and the background
thread decodes data directly to them. On the render thread,
only the remaining portion of updating procedure needs
to be computed. Communication thread receives data and
passes them using a pipe to the decoding thread. This way,
the new data can be processed on the server at the same
time as current data are decoding on the client. Rendering
on the client requires depth layers, which are recomputed
from PVS using depth peeling. The client can process
depth peeling in multiple frames by limiting the number
of layers that can be processed at once, which stabilizes
the framerate but increases the scene update latency. We
implemented an optimization, where the client uses on ev-
ery layer different subset of triangles required to generate
depth. The server computes subsets and sends them as

a mask of all triangles compressed using RLE and Huff-
man coding. The client can also use fragment linked lists
method for depth layer generation, but early tests show
worse performance to depth peeling even without opti-
mization. See Algorithm 3.

Data: Compressed data
Result: Scene data
// On decoding thread
Decompress packed texture using JPEG;
Decompress using RLE and Huffman coding:
- block counts
- empty pixel mask
- triangle subset mask for every layer;
Update vertices — apply difference patch;
Apply pixel mask to texture;
Compute triangle indices from subsets for layers;
Compute block indices from block counts —
different for block-first and layer-first order;

Copy data to GPU buffers (mapped to the client
memory);
// On render thread
Generate depth layers using the depth peeling;
Update textures from pixel buffers (packed texture,
block indices);

Relocate fragments back to their original layers;

Algorithm 3: The scene updating process on the
client.

5.2 Rendering

The client renders geometry applying layers as perspective
projected textures. Fragment shader iterates through depth
layers comparing with original depth to find the correct
layer number. Depth layers are precomputed from PVS in
the scene update phase. If pixels are not relocated back
during the scene update, the shader iterates over color lay-
ers skipping empty pixels, otherwise the shader accesses
only one color layer. The color layers are stored inside
packed texture and indirectly accessed through block in-
dex texture. If the first layer is fully covered, index to its
tiles are computed directly and not received from index
texture.

6 Results

We implemented the server and client with C++, OpenGL,
and CUDA using nvJPEG for compression on the server
and TurboJPEG for decompression on the client. We fo-
cus on visual quality, bandwidth requirements, the scene
update latency, server’s and client’s performance. We
ran several tests with the camera automatically follow-
ing the same prerecorded path with a duration around 2m
and network speed around 30Mbps. We used resolution
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1920x1080 on the client, 8x8px block size, and JPEG
quality 30 with subsampling 444. The FOV was enlarged
1.1 times, which gives the layer size 2254x1214, and the
first layer was always fully covered. The server has 2x
CPU Intel Xeon E5-2630 v3 @ 2.4GHz, 64 GB RAM,
the GPU NVIDIA GeForce GTX TITAN Black, and the
client has the CPU Intel(R) Pentium(R) CPU 2020M, 8
GB RAM and the GPU Intel R© HD Graphics.

6.1 Server performance

PVS computation took 11ms per scene update, rendering,
and packing took 33ms and compression 30ms on average.
Compressed scene size is 670kB on averages. The scene
update latency on the client (time between frame request-
ing and rendering it) is 400ms and delta time (how often
is the scene updated) is 200ms on average. Both times are
large, mainly due to high bandwidth requirements. The
server renders only simple diffuse shading. The average
values of the server benchmark are shown in Table 1 on
the right side.

6.2 Client performance

We measured the client performance on a client with a
low-performance GPU integrated into the CPU, to par-
tially simulate a mobile device. We tested both block or-
derings combined with two fragment relocation solutions:
skipping pixels during rendering (Skip Mode) and reloca-
tion during scene updating (Relocate Mode). The block-
first order gives better performance compared to layer-first
(around 1.15 shorter rendering and pixel relocation time)
because the block index is fetched maximum once for each
processed fragment. Table 1 on the left side shows a com-
parison of both fragment relocation solutions using block-
first ordering.

The most time consuming is the depth peeling, which
in total requires about 46ms per scene update, divided into
multiple frames with limit three layers per frame. The use
of a lower limit of processed depth layers per frame in-
creases the scene update latency because the scene render-
ing time of more frames is counted to the latency. Depth
peeling without triangle subsets optimization performed
30% worse on average.

Rendering using Relocate Mode is faster (11ms com-
pared to 20ms), but requires another 22ms in the scene
update phase. In our testing, it performed better than Skip
Mode (58fps compared to 43fps) because the same scene
data are rendered many times (around 9 times).

6.3 Visual Quality

The server currently renders the scene using only simple
diffuse shading. Visual testing investigates the degrada-
tion of the quality by compression and reprojection on the
client. Visual quality highly depends on the used JPEG
compression quality and the scene update rate. Fig. 7

Client Server

Relocation Mode Relocate Skip Sample Count 569

Render Layer Count 13.53

Sample Count 5361 3913 Vertex Count 31506

FPS 58.29 43.18 Texture Height 2665

Frame Time (ms) 21.19 29.03 Time (ms)

Frames / Update 9.41 7.78 PVS 10.71

Update Part (ms) 7.94 6.78 Render 3.50

Render (ms) 10.99 19.82 Sort, Relocate, Count 9.24

Sum (ms) 18.95 26.66 Pack 6.46

Update Fill 3.61

Sample Count 569 503 Sum 33.53

Server Time (ms) 53.75 53.55 Compression Time (ms)

Updates / Second 5.19 4.72 Color (JPEG) 4.58

Delta Time (ms) 199.56 225.62 Color Mask 16.21

Latency (ms) 379.70 423.19 Block Counts 7.97

Depth Peeling (ms) 46.20 45.72 Other 1.02

Relocate Pixels (ms) 21.57 - Sum 29.78

Texture Upload (ms) 5.74 5.74 Compressed Size (kB)

Sum (ms) 73.51 51.46 Vertices 77.77

Decompress (ms) Triangle – Layer Mask 5.06

Color (JPEG) 40.93 40.30 Block Counts 6.56

Color (Mask) 6.13 5.83 Color JPEG 421.12

Other 3.07 5.02 Color Mask 155.84

Sum 50.13 51.15 Sum 666.47

Table 1: Benchmark results, containing an average values
over sample count in the same section or table.

shows the images rendered the client and differences with
the original images rendered on the server.

7 Conclusions

We have proposed and implemented a method for remote
rendering using thin client with low performance. There
are several issues in the current implementation — slower
client rendering and updating performance and high trans-
fer data requirements (ca. 30Mbps) for very small scene
update rate (ca. 5 per second). Visual quality is compara-
ble to a video stream, and frame-upsampling on the client
partially compensates for a low update rate.

Our primary focus will be to address the shortcomings
already mentioned. The transfer size can be reduced by
using a video stream compression for the first layer (e.g.,
MPEG) and by improving the compression technique for
pixel mask. Our solution currently does not correctly
handle triangles perpendicular to the projection plane and
moving camera view backward.
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Figure 7: Images rendered on the client (top) and the dif-
ferences from the original images rendered on the server
(bottom). The first image shows the same view as last re-
ceived scene data, and the second image shows a different
view using the same scene data (slightly moved camera).
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