
Simulation of scanning and reconstruction of 3D objects in
virtual environment

Boris Sliz∗

Supervised by: Martin Madaras†

Institute of Computer Engineering and Applied Informatics
Slovak University of Technology

Slovakia

Abstract

The development of 3D scanners in recent years enabled
object scanning with high precision. In the process of 3D
reconstruction, the first step is to scan the object with dif-
ferent points of view, while these scans are aligned. De-
spite the significant advances of 3D scanners, their acqui-
sition is still costly, and capturing correct scans is time-
consuming.

In this paper, we focus on the simulation of the pro-
cess of scan acquisition, alignment, and reconstruction in
the virtual environment. Our work consists of the imple-
mentation of multiple approaches to simulate 3D scanning.
We use a simulated robotic hand manipulator to achieve
points where we capture virtual scans. Reconstructed vir-
tual scans can provide information on whether we captured
all parts of the scanning object, or we need additional data.
We also simulate a realistic spawn of multiple parts into
the bin, where we use the virtual scanner to capture the
scene. Virtual scans of randomly spawned objects are use-
ful as testing data for localization purposes.

Keywords: Virtual scanning, 3D reconstruction, Kine-
matics

1 Introduction

With the development of new technologies, 3D scanning
and 3D object reconstruction became very popular. The
latest 3D scanners are capable of capturing millions of 3D
points. The precision of these points can be high, but there
are still some limitations, for example, when scanning ob-
jects are shiny or reflective.

Acquired data from these scanners can be used for a
variety of applications. It is prevalent in the production
of CGI movies or video games, where it might be eas-
ier to scan and reconstruct objects than create them with
modeling software. Another widespread usage is in pre-
serving cultural heritage, where objects are reconstructed
and viewed by people from anywhere in the world through

∗boris.sliz1@gmail.com
†martin.madaras@gmail.com

virtual reality. Since the improvement of precision in 3D
scanners, they became more prevalent in medicine, mostly
in dentistry, where doctors can create new teeth based on
reconstructed 3D scans.

Most of the 3D scanners use time of flight [13] scan-
ning methods. These scanners consist of 2 parts - laser
and receiver. The laser casts rays, and the receiver cap-
tures when that ray hits the object. Depth is calculated
based on the time from casting to receiving ray. Another
popular method is called triangulation scanning [1]. These
scanners have laser and camera. Laser, camera, and a point
where the laser is received create a triangle. Distance be-
tween laser and camera and the angle between laser and
point are known. When the camera receives a point on
the object, we can calculate the angle between the camera
and this point. From this, it is possible to easily calculate
all sides of the triangle, and the angle axis of this triangle
represents depth. These scanners are usually scanning ob-
jects that are rotating on a rotary table, which creates an
automated scanning process.

The basic approach to automated scanning and recon-
struction of 3D objects is based on a scanning object with
the use of a rotary table combined with a robotic arm ma-
nipulator. This is also possible with capturing many 2D
images that can also create a point cloud, but the result
is not entirely accurate. From captured point clouds can
be object then reconstructed into a 3D model. These re-
constructed objects are not always ideal. This is usually
because there are not enough scanned points of some parts
of the object, and users then need to start this whole pro-
cess over again with new points so that they cover all parts
of the object.

1.1 Motivation

This paper focuses on the reconstruction of a 3D object
from multiple scans, while we simulate this whole pro-
cess in a virtual environment. Firstly the user picks points,
where virtual scans should be captured. These points are
then reached with a robotic arm manipulator with a virtual
scanner as its end effector. These scans are then aligned
and reconstructed. Simulating this process in a virtual en-
vironment can help in evaluating whether picked points

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

can capture enough parts to reconstruct the whole scan-
ning object.

One of the requirements of our system is to be able to
simulate any model of a robotic manipulator. This enables
us to easily switch between different robots, which allows
fast and simple testing. All that is necessary is to add new
models of robotic parts and setup basic parameters (joint
angle rotation, length, etc.).

Capturing vast amounts of real scans can be expensive
and time-consuming, so virtual scanning can also help in
an easy acquisition of data to test algorithms. Scans that
we create through computer simulation are also cheaper,
faster, and way more flexible. They are ideal for large
in analysis systems (e.g., Monte Carlo), where algorithms
need to run thousands of times.

We also utilize physics simulation to spawn parts into a
bin randomly. Automated bin picking solutions need to lo-
calize these parts so a robotic manipulator can pick them.
This robot needs to see these parts, and it needs to recog-
nize their location. We can then use these virtual scans to
test the localization of these parts.

2 Related work

There are many different ways to simulate 3D scanning,
for example, getting points in the scene with raycasting or
unprojecting data from the depth buffer. Raycasting ap-
proach [6] is based on algorithms that calculate the inter-
section of a ray cast from a virtual camera and objects in
the scene. Camera casts R0,...,Rn rays in shape of planar
cone and intersections of these rays are saved as points into
the point cloud. These rays are then easily altered, which
can simulate outliers created by real scanners. One option
changes the angle of ray right after it is cast. The second
option changes the position from where the ray is cast.

The approach using depth buffer is saving points in
scene that are visible by the camera. Lidar OpenGL simu-
lator [19] uses depth buffer to create a point cloud from a
camera’s point of view. This simulator is capturing only
one object, and the result is very dependent on cutting
planes of the camera. It uses additive noise in postpro-
cessing - small random values are added to random points.

Robotic simulators like Gazebo [11] or RoboDK [9]
can simulate the movement of the robotic hand manipula-
tor with the implementation of inverse kinematics. These
simulators usually use Jacobian inverse methods [4] to
calculate inverse kinematics. The approximation method
of inverse kinematics like Gradient descent [16] is not
completely precise, but it can simulate imperfections of
real robotic manipulators. This method first creates sim-
ulated rotation with all joints to all possible angles and
then moves by chosen learning rate to a direction that gets
end effector closest to the target. These robots are usu-
ally defined in URDF (unified robot description format)
[14]. This format is an XML file that stores information
about robot. It can define how many joints robot has, how

much each of them weights, etc. These values can help
create a realistic simulation. In virtual scanning simula-
tions, where also the robotic hand is used, it is common
to use also rotary table [3]. This table is useful when the
robot is not able to reach behind the object that we want to
scan. A combination of the robotic hand and rotary table
allows capturing almost every part of the object, which is
necessary in order to get good results in reconstruction.

Mentioned simulators also use physics engines so they
can simulate collisions with high precision. One of the
most popular physics engines is Bullet [2]. This engine
calculates collisions of basic rigid bodies, but it also sup-
ports soft bodies and multi bodies (robot). Most of the
precision of object collision behavior is because of the in-
ertia matrix and center of mass, which define the object’s
behavior. UDRF files are containing these pieces of infor-
mation.

3 Virtual scanning

We create our virtual simulation of scanning and recon-
struction in OpenGL, where we capture scans through
depth buffer values and camera parameters. We also
use a method that modifies the basic OpenGL render-
ing pipeline. This modification happens in the fragment
shader, where we store depth in 2 color channels and inten-
sities of points in the remaining channel. To test another
method of virtual scanning, we used raycasting in Unity to
create point clouds.

3.1 Depth buffer

In this method, we implement a basic rendering OpenGL
pipeline. In the virtual scene, the camera represents a vir-
tual scanner, and scans are created based on data from the
depth buffer. This data represents linear values in range
0-1. Later we will need to unproject camera coordinates
to world coordinates, and for this, depth needs to be trans-
formed based on near/far clipping planes. We can get this
transformation with the following equation:

depth = n∗ f/(f +n−d ∗ (f −n)) (1)

where d is value from depth buffer, n is near clipping plane
and f is far clipping plane.

Clipping planes need to hug scanning objects or scenes
as tight as possible because if the clipping plane would be
much bigger than it is necessary, then the resulting point
cloud would have depth values in the small range - which
results in a flat point cloud.

To create a whole point cloud after the adjustment of the
depth value, we need to find corresponding world coordi-
nates. These coordinates can be acquired by unprojecting
camera space. To do this, we use the camera’s projection
matrix and the corresponding value from the depth buffer.

To get the final point cloud, we save all points from un-
projection into a custom .ply file. Point cloud captured like

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

this is perfect (see Figure 1); it does not have any outliers,
noise, or distortion for now, which could in the real world
happen only in ideal conditions. Figure 1 represents one
scan of the object. Later on, we will describe capturing
multiple scans and aligning them for reconstruction.

Figure 1: Virtual scan (left) and scanning object (right).

3.2 Color buffer

In this method, we are modifying fragment shader to store
depth in the color buffer. The length of a light ray in the
scene represents depth. This ray is cast from the camera
position, so depth value represents the distance between
camera and fragment. This is a similar method as it is in
time of flight 3D scanners, but instead of the time of ray,
we can use the length of ray since it is easier and possible
in the virtual environment. To store depth value, we use
two 8-bit channels.

Basic fragment shader calculates color in RGB chan-
nels. We override GB channels with a 16-bit depth value.
This depth can then be acquired and transformed in the
same way as it was when we were using the depth buffer.
This way, we can get XYZ world coordinates and create
a virtual point cloud. There is still R channel free, and
we use it to store intensities of points. These intensities in
point clouds represent the brightness of each point. In reg-
ular environments (without too many different lights), this
brightness is getting lower when points are further from
the camera. To simulate this, we use attenuation of light,
which we cast from the camera position, so if it is fur-
ther from the camera, its attenuation is lower. We repre-
sent intensity as R color multiplied by constant, linear, and
quadratic attenuation. Figure 2 portrays the point cloud of
the same object with the same camera configuration, as
seen in Figure 1, but using a color buffer with intensities.

Results from scans using depth buffer and color buffer
are almost identical, but using light rays to calculate depth
is more robust, and it more simulates real 3D scanners. It is
more accurate for objects that are further from the camera
since depth buffer is only accurate when objects are close
to the camera.

Figure 2: Virtual scan with intensities.

Both of these methods are fast because they do not re-
quire any hard computation when acquiring point clouds.
This means that they both can be used in real-time appli-
cations.

These virtual scanners are in a virtual scene, and they
are attached to the robotic hand manipulator, which is de-
scribed in the next section. In this virtual environment,
the user can pick multiple scanning points and multiple
parameters. These parameters include noise, distortion,
point cloud density, and alignment method.

3.3 Raycasting

To achieve world coordinates in the scene and create a
point cloud, we can also use raycasting. We use Unity en-
gine [18] because of its efficient and accurate implemen-
tation of raycasting. In Unity, we also create a scene with
a robotic manipulator where users can pick points, where
virtual scanner acquires point cloud. This point cloud is
created by casting rays to all directions in cameras view
and saving XYZ world coordinates after each ray hits the
object. Resulting scan (see Figure 3) is very similar to the
method where we use light rays and color buffer, but ray-
casting is computationally more expensive.

Figure 3: Scene in unity (left) and virtual scan (right).

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

3.4 Normals

The last part of the virtual scanning pipeline is a recon-
struction, and to do that, our scans need to have normals.
For each point in a point cloud, we pick k nearest neigh-
bors, that serve as points to estimate normals. We pick
these neighboring points in the loop where we go through
each point and look in all directions. From these points, we
remove outliers. As an outlier, we identify points that have
higher than a specified distance from the referenced point.
After the removal of outliers, we can compute the centroid
of these points. Neighboring points and centroid are input
data for singular value decomposition (SVD), and the left
singular vector from SVD then represents the estimated
normal.

3.5 Noise and distortion

To simulate 3D scanners correctly, the resulting point
cloud should have some noise and distortion. To simulate
noise, we are using Gaussian noise. It modifies normally
distributed random points by a small value. To simulate
distortion, we multiply XY coordinates of each point by
radial and tangential distortion coefficients. This whole
process can be seen in Figure 5; the scan on the left is
shown with simulated Gaussian noise and on the right with
simulated distortion. Distortion in Figure 5 is scaled up for
illustration. Scanners usually do not have distortions that
high.

Figure 4: Point cloud with noise (left) and with distortion
(right).

3.6 Alignment and reconstruction

To align virtual scans, we compute initial transforma-
tions with combination with ICP algorithm [15]. The first
method that computes initial transformation takes the ro-
tation of the model that we scan and the transformation
of the camera. For the camera, we need its position and
inverse rotation so that we can transform the scan to the
initial rotation.

Keypoint matching is the second method that we use to
get the initial transformation. This method contains four
steps:

• Find keypoints

• Create descriptors of keypoints

• Match keypoints

• Calculate transformation

To find keypoints in a point cloud, we use SHOT algo-
rithm [12]. This algorithm also works as a descriptor for
keypoints, so it is holding all information about each key-
point (rotation, scale, etc.). Keypoints of two correspond-
ing point clouds match when their descriptors are equal or
very similar. There is a lot of outliers in these matches.
For an outlier removal, we use RANSAC algorithm [7].
RANSAC returns four corresponding points with informa-
tion about the transformation between these points. Align-
ment of all of the point clouds returns one union point
cloud that can be reconstructed.

To reconstruct the aligned union point cloud, we use
Poisson reconstruction [10]. In Figure 5 this whole pro-
cess can be seen, from aligning two corresponding point
clouds to reconstructing the union point cloud.

4 Robot manipulator

Our implementation of a robotic manipulator had to be
generic so that it would be possible to add any robot model
with any type of joints. First part is devoted to its initial-
ization and second part to its positioning and movement.

4.1 Robot model

For every part of the robot model, it is necessary to set if
it is a base, joint, or end effector. The base of the robot is
static and always stays in the same position and rotation.
Joints are usually able to rotate only in one direction. The
end effector can be dynamic, so it is acting as a joint, or
it can be static. For example, welder robots usually have
dynamic end effectors, but when we connect a 3D scanner
to a robot, it acts as an end effector, so it is static.

After setting up a robot in the virtual environment (Fig-
ure 6), we implement kinematics that will define its posi-
tion and movement.

4.2 Kinematics

After setting up the robot model, we needed to implement
its movement. The goal is to get end effector to posi-
tion that is picked by the user. Forward kinematics checks
where is the position of an end effector, and inverse kine-
matics takes care of the movement of joints. Forward kine-
matics is simple because it always has only one correct
solution, inverse kinematics usually have multiple. To cal-
culate forward kinematics, we need to find positions of
joints based on their rotations. Forward kinematics as-
sumes that we know the length of all joints, the rotation
of each joint, and the position of the base. Based on these

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: From left to right: single point cloud, 2 unaligned clouds, 2 aligned clouds, 35 aligned clouds, reconstructed
aligned clouds.

Figure 6: Robot hand in virtual scene.

assumptions, it is possible to calculate the position of the
remaining joints with the following equation:

Pi = Pi−1 + rotate(Di,Pi−1,
i−1

∑
k=0

αk) (2)

P represents the position of joints, D is the length of each
joint, and α are angles of previous joints. After iterating
through all joints, we can get the position of the end effec-
tor.

In a virtual environment, it is also possible to just get
the position of an end effector since its more comfortable,
straight forward and has the same result.

To implement inverse kinematics, we used a Gradient
descent algorithm. In kinematics, this algorithm firstly vir-
tually rotates joint to all possible directions (if the joint
can move in one angle, there are only two possible direc-

tions). Then Gradient descent checks which rotation made
the robot closer to the target point, so we just compare the
distance of two positions. This joint then rotates, and the
value of this rotation is called the learning rate. This value
is usually minimal because significant learning rates can
miss the target position. Each joint rotates by a value of
the learning rate, but it starts in a joint that is close to the
end effector because this joint moves the whole robot least.
If we start with the lowest joint in robot hierarchy, we risk
missing the target point due to significant movement.

After the implementation of robot initialization and its
movement, we had to add the possibility for the user to
pick points where a virtual scanner captures the scans. We
added a target point to a virtual scene that can be easily
moved. Users can move this target around and pick mul-
tiple points. Except for these points, it is possible also to
pick how many times will be object rotated and by how
much. After points and rotations are picked, virtual scan-
ning can start. A virtual scanner is located at the end
of the robotic hand, so it is its end effector. This scan-
ner will reach all picked points for each rotation. So let
us say if we picked four points and ten object rotations
by 20 degrees, then the simulation will capture 40 scans.
Each robot calculates the radius of its reach so it can notify
users if they pick unreachable points. After obtaining each
scan, the computation of initial transformation and nor-
mals starts. These scans are being aligned on the separate
thread while the process of scanning is still running. After
alignment of each scan, it is added to the visualizer, so the
user can see in real-time how the creation of union point
cloud runs. Reconstruction starts when all scans are cap-
tured and aligned. After the finish of reconstruction, we
add the resulting mesh to the visualizer, so it is possible to
inspect it.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

5 Virtual scanning in physics simu-
lation

This chapter describes the implementation of a virtual
scanner in a physics simulation that spawns parts into the
bin. This simulation shows another possible usage of the
synthetic point clouds, and it is to test localization algo-
rithms. Localization is a method of locating objects in a
point cloud. In industry, this is often used on the identi-
fication of the location of parts/objects that are randomly
stored in a container or bin. We use this use case as a
possibility to check if our virtual scanning methods can be
used for multiple applications.

To create this simulation, we use physics engine Bul-
let [2], which can import objects as rigid bodies and com-
pute their collisions. We use our virtual scanner on these
parts so it can be used to test localization, which is a
method of locating objects in a point cloud.

We implement this simulation in multiple environments,
and one of them is the Gazebo simulator. This simulator
uses two physics engines to calculate collisions, Bullet and
ODE (Open Dynamics Engine) [8]. To spawn objects into
the scene, we use C++ plugin that connects to the simula-
tion. This plugin sends messages to a simulator with the
specification of positions and orientations of objects. The
behavior of these objects is based on their URDF or SDF
(Simulation description format) files. SDF is an XML for-
mat that describes objects and environments for robot sim-
ulations, visualization, and control. These files specify in-
formation about the object’s physics parameters, which in-
clude gravity, friction, and inertial parameters (inertia ma-
trix, mass, and center of mass). The simulation spawns
objects until parts have filled the bin. A virtual scan is
created after the last part is spawned.

Figure 7: Bin filled with parts (left) and captured point
cloud (right) in Gazebo.

To create a virtual scan in Gazebo, we use its simulated
depth camera (see Figure 7). In the Gazebo scene, we can
add and set up this camera and start the simulation. While
simulation is running, it streams messages that can be cap-
tured by using C++ plugin. We use this plugin to read
from these messages, obtain XYZ coordinates, and create
a point cloud.

Collision simulation in Gazebo has high precision, but
there is a significant overhead in communication between
C++ and simulator, which makes simulation run very slow.
To improve the speed of simulation, we also used the Bul-
let engine separately without the Gazebo simulator. Us-
ing the Bullet library and PyBullet [5], which is a Bullet
Python wrapper, we managed to create the same simula-
tion without communication overhead.

In Bullet, we first import the URDF file of the object.
This file is then parsed and converted to Bullet format.
The loaded mesh needs to be transformed into convex hull
mesh since Bullet supports dynamic collisions only for ba-
sic shapes (cube, cone, etc.) and the convex hull of the
mesh. Collisions for triangulated objects are allowed only
for static objects. It is possible to use approximate convex
hull decomposition [17] to decompose object into multi-
ple smaller objects, where a combination of theirs convex
hulls creates shape similar to original triangulation mesh.

To capture a virtual scan of the bin, we use PyBullet’s
OpenGL renderer. This renderer allows us to read values
from the depth buffer. We use these values to create a vir-
tual scan that captures parts that are inside the bin (see
Figure 8).

Figure 8: Bin filled with parts (left) and captured point
cloud (right) using Bullet physics engine.

6 Experiments

The data used to analyze the virtual scanning and recon-
struction is captured by Photoneo’s PhoXi 3D scanner1. In
this section, we compare the reconstruction of an object in
a virtual environment with reconstruction using a PhoXi
3D scanner. To test localization, we create a random scene
with parts inside the bin. The virtual scanner captures the
point cloud of the bin and then uses localization to find
parts.

To test possible use of virtual scanning and reconstruc-
tion, we need to compare our virtual results with some ob-
ject that is captured and reconstructed with real scanners.
We have available two PhoXi 3D scanners with a rotary
table to use for testing. In the first step, we simulate the

1https://www.photoneo.com/phoxi-3d-scanner/

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

scanning process in our application, where we choose two
points in the virtual scene. From these points, a virtual
scanner captures multiple scans of object placed on the
scene. The number of these scans depends on how many
rotations of the model we select.

Figure 9: 3D model of David by Michelangelo recon-
structed with 20 virtual scans.

Figure 9 shows a reconstructed object from two differ-
ent views with ten rotations, so it is created from 20 scans.
Since this model meets the requirements (it does not have
any missing parts), we can move to the real scanners. To
get the correct comparison, these scanners need to copy the
pose of virtual scanners as much as possible. The relative
position to the model and up vector of the virtual scanners
needs to be set similarly for real scanners. This would be
easy with the robotic hand since it gets scanner to this pose
automatically. By using calibration with a checkerboard,
we managed to place scanners to pose of the scanners from
the virtual environment. When the pose of the scanners is
set, we just need to choose the number of object rotations,
and scanning can start.

Figure 10 shows a reconstructed object from virtual
scans (left) and reconstructed object from real scans
(right). This comparison shows that simulating the whole
process of 3D reconstruction can help us predict results
that we get from real 3D scanners.

To check if it is possible to use a virtual scanner for an-
other application usage, we capture a virtual scan of the
bin with randomly spawned parts and afterward run local-
ization on this scan. To test object localization, we use
Photoneo’s 3D Localization SDK2. This algorithm is able
to find a specified 3D objects in the virtual point cloud that
we captured. Figure 11 shows the localization of the object
in a virtually created point cloud.

2https://www.photoneo.com/3d-scanning-software/#localization/

Figure 10: Object reconstructed from virtual (left) and real
(right) scans.

Figure 11: Reference object localized in the virtual scan.

7 Conclusion

This paper describes how we can simulate the process of
virtual scanning and how we can use it. We presented mul-
tiple approaches of virtual scanning. In one of them, we
use the basic OpenGL rendering pipeline, where we create
point clouds from depth buffer or modified color buffer.
To test and compare other methods, we also implement a
virtual scanner in the Gazebo (depth camera) and Unity
(raycasting) engines. In the second part, we focus on the
simulation of a robotic hand manipulator, which we use to
capture scans from multiple points.

Most of the existing solutions on simulating 3D scan-
ners focus only on the creation of synthetic point clouds.
We propose a solution that combines the simulation of a
robotic hand, virtual scanning, alignment, and reconstruc-
tion. This simulation can be used as a test environment
before the use of real systems. It can help to speed up the
process of setting up robot, where we need to pick enough
points to capture point clouds that can successfully recon-
struct object.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

To show another application use of a virtual scanner, we
create a physics simulation where we spawn multiple parts
into the bin. This simulation uses Bullet physics engine to
compute collision detection. After this bin is filled with
parts, we can create virtual scans. These scans can then be
used to test the localization of these parts and their grip-
ping with the robotic hand.

8 Future work

There are many possible ways of improvement in the case
of the virtual scanner. We simulate real scanners by adding
noise and distortion in the postprocessing part, but to cre-
ate a more realistic virtual scanner, it would be necessary
to add a complete simulation of scanner physics and also
to consider all parameters on the scene, for example, the
material of objects.

References

[1] David Acosta, Olmer Garcı́a, and Jorge Aponte.
Laser triangulation for shape acquisition in a 3d scan-
ner plus scan. In Electronics, Robotics and Automo-
tive Mechanics Conference (CERMA’06), volume 2,
pages 14–19. IEEE, 2006.

[2] Adrian Boeing and Thomas Bräunl. Evaluation of
real-time physics simulation systems. In Proceed-
ings of the 5th international conference on Computer
graphics and interactive techniques in Australia and
Southeast Asia, pages 281–288, 2007.

[3] Theodor Borangiu, Anamaria Dogar, and Alexandru
Dumitrache. Modeling and simulation of short range
3d triangulation-based laser scanning system. Pro-
ceedings of ICCCC, 8:190–195, 2008.

[4] Samuel R Buss. Introduction to inverse kinematics
with jacobian transpose, pseudoinverse and damped
least squares methods. IEEE Journal of Robotics and
Automation, 17(1-19):16, 2004.

[5] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics
and machine learning. GitHub repository, 2016.

[6] Malvin Danhof, Tarek Schneider, Pascal Laube, and
Georg Umlauf. A virtual-reality 3d-laser-scan simu-
lation. BW-CAR— SINCOM, page 68, 2015.

[7] Konstantinos G Derpanis. Overview of the ransac
algorithm. Image Rochester NY, 4(1):2–3, 2010.

[8] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simu-
lation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ode and physx. In 2015 IEEE
international conference on robotics and automation
(ICRA), pages 4397–4404. IEEE, 2015.

[9] Beata Jakubiec. Application of simulation models
for programming of robots. In Proceedings of the In-
ternational Scientific Conference. Volume V, volume
283, page 292, 2018.

[10] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. Poisson surface reconstruction. In Proceed-
ings of the fourth Eurographics symposium on Ge-
ometry processing, volume 7, 2006.

[11] Nathan Koenig and Andrew Howard. Design and use
paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), volume 3, pages 2149–2154.
IEEE, 2004.

[12] Gentao Liu, Xiangming Wen, Wei Zheng, and
Peizhou He. Shot boundary detection and keyframe
extraction based on scale invariant feature transform.
In 2009 Eighth IEEE/ACIS International Conference
on Computer and Information Science, pages 1126–
1130. IEEE, 2009.

[13] Aongus McCarthy, Robert J Collins, Nils J Krichel,
Verónica Fernández, Andrew M Wallace, and Ger-
ald S Buller. Long-range time-of-flight scanning
sensor based on high-speed time-correlated single-
photon counting. Applied optics, 48(32):6241–6251,
2009.

[14] Michael Mortimer, Ben Horan, Matthew Joordens,
and Alex Stojcevski. Searching baxter’s urdf robot
joint and link tree for active serial chains. In
2015 10th System of Systems Engineering Confer-
ence (SoSE), pages 428–433. IEEE, 2015.

[15] Aleksandr Segal, Dirk Haehnel, and Sebastian
Thrun. Generalized-icp. In Robotics: science and
systems, volume 2, page 435. Seattle, WA, 2009.

[16] Gaurav Tevatia and Stefan Schaal. Inverse kinemat-
ics for humanoid robots. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), volume 1, pages
294–299. IEEE, 2000.

[17] Daniel Thul, Lubor Ladicky, Sohyeon Jeong, and
Marc Pollefeys. Approximate convex decomposition
and transfer for animated meshes. ACM Transactions
on Graphics (TOG), 37(6):1–10, 2018.

[18] Unity Technologies. Unity 2019.1.6.

[19] John O Woods and John A Christian. Glidar: An
opengl-based, real-time, and open source 3d sen-
sor simulator for testing computer vision algorithms.
Journal of Imaging, 2(1):5, 2016.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

