
Application of Subsurface Scattering Techniques on Responsive
Visualization of 3D Range Scans

Richard Tóth∗

Supervised by: Adam Riečický †

Faculty of Mathematics, Physics and Informatics
Comenius University

in Bratislava

Abstract

3D scanning nowadays is not a difficult task when the
hardware is available for everyone and the quality is quite
good. However, scans compared to real-world objects
have still some noticeable differences in terms of realism.
In this paper, we implement the screen-space subsurface
scattering technique that approximates the light’s behavior
in translucent objects and how it affects the color of the ob-
ject. This technique will be used for the enhancement of
visual appearance during the rendering of translucent ob-
jects captured by 3D scanners. Our work takes scan as an
input and uses hierarchical structures and screen space op-
erators to create a virtual surface for point clouds in real-
time. This virtual surface will be the base for the sub-
surface scattering algorithms. We are using the common
approaches, where we fit 4-6 Gaussian functions into the
laboratory-measured diffusion profile to achieve the effect.
We are also implementing a custom solution based on a
dipole model to calculate scattering coefficients using just
the laser beam from the scanner.

Keywords: Rendering, Screen-space, Translucency,
Scattering

1 Introduction

Nowadays we can capture the reality as no one had ever
before. Even a mid-range smartphone has the proper com-
putational power to perform advanced algorithms on im-
ages and with the help of neural networks, we can achieve
impressive qualities. The goal here is to create a virtual
representation (later model) of the object, for further use.
The process of model obtaining can be very diverse, which
gives us a wide range of available devices and methods to
work with. These models can be used from archaeology
through medicine, to gaming.

We introduce a flexible method for real time surface ren-
dering, enhanced with subsurface scattering to add the feel
of realism into the scans. This solution targets use cases

∗rtoth94@gmail.com
†a.riecicky@gmail.com

with real time interaction. Live capturing and process-
ing large point clouds with today’s computational power
is achievable, but the accurate surface reconstruction has
significant impact on performance. Capturing massive
amount of data, with drone shots or with long range LI-
DAR scanners is a relevant task, where we want fast visual
representations, no need for accurate calculations. The
captured data will be unaffected, we are modifying just the
rendered result. It could be a good start to replace mesh
representations one day, and use the cloud based represen-
tations in much larger scale.

The first stage to accomplish correct generation of 3D
model with subsurface scattering is to scan the object it-
self. The most common and suitable representation for
these scans is the point cloud. This structure is the general
representation format for capturing 3D data based on the
sampling of the object surface and creating small uniform
sized points in space. This format allows us to manipulate
every point independently but we lose topology informa-
tion in the structure. This property makes the meshing al-
gorithms challenging. The scans should be improved with
various post processing techniques to improve the struc-
ture, geometry or remove the noise generated by scanners.
The overall scan quality can be enhanced with simply us-
ing more samples, but the fast processing of these massive
clouds produces many new problems to solve. More about
this is in Section 2.1.

To add subsurface scattering, we have do deal with light
calculations. Collecting all incoming light rays on the ob-
ject surface is nearly impossible task, but using mathemat-
ical models and approximations the effect can be simu-
lated. Another problem in this area is to access the mate-
rial’s physical properties dynamically. All these properties
have huge influence in the final result and could increase
computational cost.

This paper covers two different, significantly larger ar-
eas from point-based rendering. The first problem to deal
with is surface reconstruction. This refers to the smooth
and continuous solid surface, created from the raw point
cloud data. The most widely used solution is to create a
polygonal mesh. Even the direct method where we use the
points as individual vertices and interpolate them requires

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

it to iterate through every point. Almost every graphics
hardware had been optimized to work well with the tasks
like this, but in our case, the solution is very resource-
heavy. We have to create a virtual surface and simulate the
scattering effect simultaneously in real time.

The second part is the subsurface scattering effect. Ev-
ery algorithm on the previously created surface, is per-
formed using precomputed values, like the visibility in-
formation or the reconstructed normals from the previous
phase. In this paper we present two different solutions
for visualization. The first solution uses Gaussian’s to ap-
proximate the object’s diffusion profile. The second uses
a mathematical model to approximate the material’s scat-
tering parameters with basic simplifications and precom-
putations, which is performed during runtime.

In Section 2, we describe the present state of methods
used in the mentioned areas and we mention the older so-
lutions as well with the problems that they revealed. In
Section 3, we describe the whole rendering pipeline. In
Section 4 we mention the core parts of the surface recon-
struction part. In Section 5.1 we present the Gaussian
subsurface scattering approach, and in Section 5.1.1 we
take a look to the Single scattering approach, where we
are trying to determine the scattering parameters. Section
6 presents the results what we got, and Section 7 presents
some idea to improve our method.

2 Background

In this section we provide a brief overview of the most im-
portant methods and algorithms used in the surface cre-
ation field and in subsurface scattering calculations as
well. Both techniques were already implemented in many
different ways, but with new ideas, these solutions are
often recreated to fulfill the new standards in computer
graphics and requirements of the industry.

2.1 Surface reconstruction

The 3D scanners are creating a massive amount of point
data most of the time. To visualize them as a solid object,
we have to use this information for surface creation. There
are direct approaches, using the scanned points as vertices
and interpolating the values between captured points. A
relatively new research [11] gathered all the important fac-
tors and problems with the common techniques.

The first technique [13] shows an useful hint for opti-
mization: Screen space operators. They project the points
from the current camera view into a buffer and perform-
ing a screen space triangulation on neighboring points. A
minor disadvantage of screen space operators is the visi-
bility artifacts at holes or overlapping points. To eliminate
the problem, a temporal coherence can be implemented by
getting the proper depth value from previous frame. For
fast search, they subdivide the area around the point into
equal sub-regions and finding the nearest point in every

region. The lowest values are selected by the rasterizer,
using the OpenGL blending. The final normal estimation
and triangulation are performed on these nearest points.
By limiting the angle of two adjacent points they avoiding
flipped normals. They subdivide the area around the pixel
into equal regions. This subdivision range is calculated
dynamically according to the previously calculated frames
to maintain precision and performance. One of the lim-
itations is the temporal instability that happens when the
motion is applied to camera.

The auto splatting method [12] uses the previous
method as a base solution but adds improvements in key
parts. They truly calculate the K nearest neighbors using
information exchange between points in rendering pass.
They share information between the rendered points and
its neighbors in screen space in parallel. The furthest
neighbor defines the splat radius for the rendered point.
This modification gives much smoother and faster results.
The number of neighboring points to take into account is
given with a parameter, which indicates the local point
density. They discarding the not visible points, so at nor-
mal calculations the lack of these information can cause
artifacts.

The newest method is presented in [1]. As can be seen
in previous methods, using screen space operators and fast
algorithms to gather neighboring information is one of the
key parts for creating smooth surfaces. The idea here is
to use pyramidal neighborhood pattern to gather informa-
tion around the point. Dividing the area around the point
into 8 sectors and finding the lowest occlusion value solves
the visibility problem in real-time. The next part of the
pipeline uses a visibility map to perform screen space re-
construction with the Pull-Push algorithm. [9]. In this pass
they build up a new pyramid from non-occluded pixels, to
obtain the missing pixel information and perform the re-
construction of background points. Using this pyramidal
structure, they calculate normal values through individual
levels and adaptively select the smoothest according to the
distance from the camera. The biggest drawback of this
method is the larger VRAM usage and the artifacts under
camera motion.

2.2 Subsurface Scattering

Trying to accomplish rendering that accounts with a sub-
surface scattering of light is not a new feature in computer
graphics. The largest industrial companies like Unreal En-
gine had this feature in 2011 [10]. The largest impact of
this feature is visible on materials like the human skin. The
challenge here is to perform these calculations in real-time
and on the virtual surface produced in the previous stage of
surface reconstruction, in the most compatible way, prefer-
ably as a post-processing effect. In this paper, we refer to
an older method [8] which was originally developed to en-
hance human skin renderings. This method uses Gaussian
convolution to estimate the diffusion profile. They use nu-
merical fitting to find the proper Gaussian values to adjust

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

the separable kernel for a laboratory-measured diffusion
profile.

In 2001 a [6] mathematical model was presented, which
covered multiple variations depending on the material.
They designed a model with two major components. The
single scattering component what follows a single photon
through the object surface, and gives us an approximation
how light bounced. The effect is much more dominant in
materials like marble. The multiple scattering component
diffusion approximation, suitable for multi-layered mate-
rials like human skin. This method is based on observa-
tion, that light after impact rapidly becomes isotropic. For
highly scattering media like skin they use dipole model to
calculate the diffusion approximation. Both methods need
some basic precomputation for proper simulation.

3 Pipeline overview

Our goal is to create a pipeline for fast real-time rendering
of 3D scans. We are focusing on translucent objects, where
using the common rendering techniques to visualize them
as a point cloud could be challenging. For scanning, we
use a 3D camera that uses structured light patterns to ob-
tain 3D information. Every stage of the designed pipeline
is stored in a separate buffer. We illustrate the individual
stages on Figure 1. This strategy allows us to use the cal-
culated data in multiple phases easily, however with the
cost of larger VRAM usage.

Figure 1: Rendering pipeline overview. The first part of
the pipeline focuses on the solid rendering (Top, blue).
Before rendering to the screen we apply the subsurface
scattering. We offer 2 optional methods for that (Bottom,
green).

As an input, we take the depth values from the scan-
ner and render them into a texture. We take this texture
and manually build the pyramid structure using mipmaps,
and re-render them into the first input buffer. The visibility
pass uses this pyramid structure to get the neighboring pix-
els and calculates the occlusion value for the given pixel.
Using this visibility information we set initial weights for
the Pull-Push algorithm. At the end of the reconstruction,
we have several buffers to work with: original input buffer,
visibility buffer, pull buffer, push buffer. In the next part,
we take the fully reconstructed pull buffer and calculate
normals on adjacent pixels on the adjacent mipmap levels.

The final part takes the reconstructed surface with normals
and renders them into a final offscreen buffer. Individual
stages are presented in Figure 2.

As post-processing, we take the visibility buffer, the re-
constructed result, and the depth buffer. We perform a
Gaussian blur on the visible pixels. To smooth the effect
on the edges of the object, we narrow the Gaussian blur
kernel according to the depth differences. The Gaussian
parameters are chosen from the precomputed table for the
desired material.

The second optional rendering path aims for realistic vi-
sualization of the surface translucency, The whole visual-
ization is preceded with a precomputation step, that ob-
tains parameters of the surface, directly from the scan. It
modifies the fragment color according to the photon trac-
ing calculations implemented in Section 5.1.1.

Figure 2: Rendering stages. Top left: input point cloud.
Top center: hidden point removal. Top Right: fill removal.
Bottom left: reconstruction without fill removal. Bottom
center: Filled buffer (Push). Bottom right: reconstruction

4 Solid rendering

The idea behind solid rendering is to change the rendered
image as if it was a solid surface, using screen space tech-
niques. To render this virtual surface we only need the
depth information from scans.

Pyramid structure

Each buffer in the pipeline uses a pyramid structure cre-
ated with custom OpenGL mipmap textures. Every pixel
in mipmap level R contains minimum (depth) value from
underlying pixels in the previous level R-1. Level 0 is the
full resolution texture. We disabled OpenGL default fil-
tering method and implemented our MIN FILTERING in
fragment shader, in Figure 3.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

R = 1

R = 0

Figure 3: Mipmap generation with custom min filtering.
Every MIP level is half the size as the previous one. We
take 4 adjacent texels and select the one with the smallest
value as the new pixel value for the next level.

Hidden point removal

To avoid artifacts in the reconstruction phase, we discard
the occluded points. With the help of the previously built
pyramidal structure, we can effectively get the texel neigh-
boring information.

We calculate occlusion values from every mipmap level,
but we store only the smallest one for every neighbor, that
in total gives 8 values. First, a pixel is back-projected to
3D using the depth value. For a neighbor, the dot product
is calculated. Occlusion value here is the angle between
the current point and the neighbor point. Occlusion value
ω for every neighbor y of a current pixel x is expressed as:

ω(x,y) =
(

1− y− x
||y− x||

· −x
||x||

)
The average of the 8 smallest neighbor occlusion values

gives the final occlusion value for the pixel x. Comparing
this average occlusion value to a threshold determines the
visibility of the pixel. For every pixel we define a visibility
flag and store it into the dedicated texture channel for later
use.

XXYY

OO

Figure 4: Occlusion value calculation (ω) for point x.
Point x is back projected from the depth texture, while y
is one of the neighboring points. Here o is the camera po-
sition.

Pull Push

The pull-push algorithm interpolates the scattered data and
reconstructs the missing information using the pyramid
structure [9]. In our case, this information is the input
depth map from scans.

In the pull phase, we rebuild the pyramid from the finest
level to coarse using the data from the Hidden Point Re-
moval - HPR stage. The algorithm uses weights - w - to
determine the importance of each point.

At the first level (R = 0), we set the initial weights ac-
cording to the visibility flag, and initial depth according to
the HPR buffer.

On the higher levels (R > 0), we determine the weights
using a pull mask (eq. 1) and the weight values from previ-
ous level (eq. 2). The impact of the different pull masks is
discussed in [9]. The depth values we get according equa-
tion 3., where we use clamped weights,depth values from
the previous level and the pull mask.

hpull =
{1

3
,1,1,

1
3

}
(1)

w[R+1] =
3

∑
k=0

hpull [k]∗w[R] (2)

d[R+1] =
Clamp(w[R])

w[R]

3

∑
k=0

hpull [k]∗d[R]Pull
(3)

In the push phase, we create another pyramid structure
from coarse to finest level. We initialize a push kernel
(eq. 4) and a modulation value - m - using the last level
values from Pull phase.

hpush =
{1

4
,

3
4
,

3
4
,

1
4

}
(4)

m =
3

∑
k=0

hpush[k]∗d[R] (5)

d[R−1] = m∗ (1−Clamp(w))+d[R]Pull
(6)

The value d[R]Pull
is the depth taken from the level equiv-

alent to the level currently computed, but from the pull
phase. The first level (R = 0) of the Push phase contains a
fully reconstructed depth buffer.

Normal Approximation

We calculate normals on every mip level from coarse to
fine, as input we take the finest level of push phase, which
is a reconstructed depth buffer. First, we back-project
neighboring points into 3D space and construct the tangent
vectors. Cross of these tangent vectors gives the normal
vector per point on a given level. In the end, the coarsest
level contains the smoothest normals. We apply normal
smoothing with obtaining the current rendered mipmap
level as a floating-point number l. The formula for this
operation is presented in [1]. The 2 closest levels are lin-
early interpolated using the fractional part of l.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Rendering

In the last phase, we use the previously rendered buffers to
determine information for a successful render. We back-
project from the depth buffer into 3D space and export po-
sitions for remaining points, additionally, we export color
values into separate textures. At the end of the Pull-Push
phase we get a fully reconstructed buffer, with background
pixels included. With the help of the HPR mask, we filter
out the points which do not belong to the object. A key
part of that is the initial value of the HPR buffers before
the whole pipeline. To get proper results we have to clear
all buffers to the clipping plane distance.

Improvements

With camera motion, a small flickering artifact appears on
object edges caused by the HPR (Hidden point removal)
phase. To reduce this effect we added a custom edge de-
tector. If the current pixel belongs to the edge we automat-
ically set this pixel as visible, preventing from discarding.
If 3 neighboring pixels in a row occlude the current point
and there are at least 3 an additional pixels wherefrom it is
visible, we tag this pixel as an edge point.

When the pull phase first creates the pyramid structure,
weight information is added to every pixel. We use this in-
formation to filter out false-positive points and avoid fill-
ing in the push phase. To get the suitable mip level for
filtering we obtain the current level,similarly to the normal
approximations [1].

5 Applying subsurface scattering

After we managed to create a virtual surface from a point
cloud scan, we apply the subsurface scattering as a post-
processing effect. We offer two different approaches, to
do that.

5.1 Gaussian subsurface scattering

Figure 5: Measurement of the material diffusion profile,
with a single leaser beam in a dark laboratory environment
(a). Visualizing the measured reflectance decline with the
increasing radial distance (b) [4]

.

Subsurface scattering with Gaussian filters is based on
the approximation of the diffusion profiles [3]. The dif-
fusion profile describes how the light scatters under the
surface of the object. The value depends on many physi-
cal properties of the given object and is usually modeled
with standard BSSRDF function [2]. As we see on 5, the
scattering effect behaves differently for every light wave-
length.

We can calculate diffusion profiles, taking already mea-
sured scattering coefficients and the dipole model or with
laboratory measurements [6]. With a known profile, we
need to find N Gaussian functions, which sum matches
these profiles as closely as can. We can find these by
discretizing the known profile an using optimization tools
to perform the numerical fitting. In our solution, we use
the already measured Gaussian values for marble and skin
from [7].

This method takes the color buffer and the depth-stencil
buffer as an input. We apply the Gaussian as a sepa-
rate horizontal and a vertical 1D convolution filter and a
multiple render target workflow and OpenGL alpha blend-
ing render the 4 Gaussian passes into a single buffer.
To be performance efficient, we apply the blur just on
the color buffer only, further constrained with the depth-
stencil buffer. Without this improvement, a slight halo ef-
fect appeared on edges.

The entire effect is implemented as a simple post-
processing effect in a fragment shader. We used the HPR
visibility flags to get the mask of the object and the recon-
structed pull buffer. At the end of the pipeline, we added a
specular color component.

5.1.1 Single scattering

In 2001 a research presented the dipole and multipole
models, including the measurements for obtaining the dif-
fusion profile of any material [6]. Later, another re-
search presented a practical solution for implementing
these mathematical models in a fragment shader [5]. We
take this idea and implement a shader with a single scatter-
ing component only. The diffusion approximation which
is the second part of the equation has a less significant ef-
fect in single layered materials.

iiLdotNiLdotNi

TToo

NN

II
-L-L

NNii

TTii

light-poslight-pos
view-pointview-point

PP

PPsampsamp

PPiiJJ BBnn
BB11

AAnn

AA11

Figure 6: Single scattering.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

We trace the path of a single photon exiting a surface
point, observed by a camera. To do so, we have to march
along the direction opposite to vector path To and fire out
a ray in a direction to light source, to get the intersection
point Pi. We are calculating the sum of the incoming light
energy on the refracted outgoing ray To. We determine the
incoming refracted vector Ti in point Pi, and we assume
that light has uniform direction and does not reflect. Us-
ing Fresnel equation we determine the reflectance and we
define values for phase function [5]. The model can be
seen in Figure 6.

Knowing that, the sample point Psamp can be calculated
as:

Psamp = P+To ∗ s′o (7)

Mathematically what we want to achieve, is the radiance
at observed point can be expressed as eq 12.

phs = (~ω ′i ·~ω ′o) (8)

Ei = Li(xi, ~ωi) (9)

s′i f = e−s′iσt (xi) (10)

s′o f = e−s′oσt (xo) (11)

Lo(xo, ~ωo) =

[
Ei

σs(xo)∗F ∗ phs
σtc

s′i f
]

s′o f (12)

The outgoing light energy depends on: the phase func-
tion (eq. 8), on the Fresnel term and on exponential falloffs
(eq. 10, 11) and the the scattering coefficients. Section 5.2
covers how to obtain and work with scattering coefficients.

In research [5] they presented a code in pseudo shading
language with a ray tracing component. We implemented
a custom ray tracing method based on the screen space
operators. We shoot a ray from every sample point on the
refracted view ray into the light direction. We need to ob-
tain the intersection between the ray and surface. As illus-
trated on a figure 6, our solution is to get a point (A1,An)
on the ray vector, and project it back to the texture space.
The depth of the point is compared to the surface depth
stored in the depth map (B1,Bn). This iterative process is
repeated until:

||An−Bn|| ≈ 0 (13)

For the best accuracy the distance between 2 adjacent
points on the ray should project to the size of a single pixel.

5.2 Parameter estimation

To be able to calculate the single scattering as we pre-
sented in Section 5.1.1, we need to obtain the scattering
properties of the material. We extract the scattering co-
efficient σs and the extinction coefficient σa from regular
diffuse texture [5]. Assuming, that this texture is the result

of the scattering events under laser beam of 3D camera
projector. Approximation of the BSSRDF function with
BRDF, (eq. 18) and fixing the η value in Fresnel equation
for refraction index allows us to build a table of discrete
values from the equation (eq. 18). This table contains the
reduced transport albedo eq. 14, which is the ratio of the
scattering coefficients (eq. 14).

Detailed description of the equation parameters is pre-
sented in [6] on Figure 2.

α
′ =

σ ′s
(σ ′t −σ ′s)

(14)

σ
′
t =

1
ld
√

3(1−α ′)
(15)

ld =
1

σtr
(16)

σ
′
s = α

′
σ
′
t (17)

Rd =
α ′

2
(1+ e−

4
3 A
√

3(1−α ′))e−
√

3(1−α ′) (18)

Getting the color of the pixel in every frame allows us to
dynamically recalculate the table and get scattering coef-
ficients. With the help of mentioned equations Eq. 15, 17,
16 we can substitute values in the Equation 12 and build
the fragment shader.

6 Results

We tested our pipeline on a custom dataset, scanned with a
Photoneo camera. For testing we used an Intel i3 - 8350K
CPU with 4.4GHz clock speeds and a NVIDIA GTX 1060
GPU on a FullHD resolution.

Dataset Point count AVG FPS 1% low FPS
Spike 3 457 357 32.4 26.0
Armadillo 172 974 33.9 30.9
Dragon 435 545 33.2 28.3

Table 1: Average and the low 1% FPS values in different
datasets, while simulating user interaction with the view.

In performance tests we have simulated basic user inter-
actions in the scene for 1.5 minutes, with disabled back-
face culling and with 4X MSAA. For capturing the results
we used MSI Afterburner v4.6.2, and we run the tests on
the 442.74 NVIDIA drivers.

The reconstruction results are presented on Figure 7.
Subsurface scattering results are on Figure 8. The over-
all quality improves with higher point count but the FPS
remains the same. We illustrate the reconstruction and the
subsurface scattering results on a larger custom model on
Figure 9. and on Figure 10.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: Reconstruction results. Top line: input scans.
Bottom line: our reconstruction method

Figure 8: Subsurface scattering example. From left to
right: our reconstruction, subsurface scattering with mar-
ble diffusion profile, subsurface scattering with skin diffu-
sion profile.

Figure 9: Reconstruction result on a high quality custom
scan with 3.8M points

7 Future work

Eliminate the flickering artifacts under camera motion
with temporal coherence between frames should be a sig-

Figure 10: Gaussian subsurface scattering result on a high
quality custom scan with 3.8M points

nificant improvement in quality. Adding interface to calcu-
late the numerical fitting to find the Gaussian sum should
be useful to make the whole pipeline much more robust.
After generating a massive amounts of data, using a neu-
ral network to determine the scattering coefficients may
improve the general usability.

References

[1] Hassan Bouchiba, Jean-Emmanuel Deschaud, and
Francois Goulette. Raw point cloud deferred shad-
ing through screen space pyramidal operators. 2018.

[2] Eugene d’Eon and David Luebke. Advanced tech-
niques for realistic real-time skin rendering. in
nguyen (ed.), gpu gems 3, 2007.

[3] Eugene d’Eon, David Luebke, and Eric Enderton.
Efficient rendering of human skin. In Proceedings
of the 18th Eurographics conference on Rendering
Techniques, pages 147–157. Citeseer, 2007.

[4] E d’Eon and D Luebke. Chapter 14. advanced tech-
niques for realistic real-time skin rendering. GPU
Gems, 3.

[5] Christophe Hery. Implementing a skin bssrdf: (or
several...). In ACM SIGGRAPH 2005 Courses, pages
4–es. 2005.

[6] Henrik Wann Jensen, Stephen R Marschner, Marc
Levoy, and Pat Hanrahan. A practical model for sub-
surface light transport. In Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques, pages 511–518, 2001.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

[7] Jorge Jimenez and Diego Gutierrez. Screen-space
subsurface scattering. GPU Pro: Advanced Render-
ing Techniques, pages 335–351, 2010.

[8] Jorge Jimenez, Veronica Sundstedt, and Diego
Gutierrez. Screen-space perceptual rendering of hu-
man skin. ACM Transactions on Applied Perception
(TAP), 6(4):1–15, 2009.

[9] Martin Kraus. The pull-push algorithm revisited.
Proceedings GRAPP, 2:3, 2009.

[10] Martin Mittring and Bryan Dudash. The technol-
ogy behind the directx 11 unreal engine” samari-
tan” demo,”. In Game Developer Conference (GDC),
2011.

[11] Reinhold Preiner. Dynamic and Probabilistic Point-
Cloud Processing. PhD thesis, Institute of Com-
puter Graphics and Algorithms, Vienna University of
Technology, Favoritenstrasse 9-11/186, A-1040 Vi-
enna, Austria, October 2017.

[12] Reinhold Preiner, Stefan Jeschke, and Michael Wim-
mer. Auto splats: Dynamic point cloud visualiza-
tion on the gpu. In H. Childs and T. Kuhlen, editors,
Proceedings of Eurographics Symposium on Paral-
lel Graphics and Visualization, pages 139–148. Eu-
rographics Association 2012, May 2012.

[13] Reinhold Preiner and Michael Wimmer. Interactive
screen-space triangulation for high-quality rendering
of point clouds. Technical Report TR-186-2-12-01,
Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, April 2012. human
contact: technical-report@cg.tuwien.ac.at.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

