
Exploration of Interactive Visualization in the ELM Architecture

Monika Wissmann*

Supervised by: Harald Steinlechner†Andreas Walch ‡

VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH
Vienna / Austria

Abstract

Coupled visualizations and interactions in 2D and 3D
represent a large part of the work in many visualization
projects. By using the ELM architecture, these interac-
tions are approachable, structured, composable and easy
to test. ELM-style web applications are currently gain-
ing importance and have already established themselves
in web-development.

In this paper, we implement a ranking view using this
architecture. Aardvark.Media is a functional programming
interface to synchronize data and its visual representations
while providing high-performance rendering. Based on
the ranking view we demonstrate the power of an incre-
mental rendering system. The incremental rendering sys-
tem enables us to achieve drastic reductions in the creation
of the complex 2D user interface.

Keywords: Interactive Visualization, Incremental
Rendering, Functional Programming, Domain-Specific-
Languages

1 Introduction

Interactive visualizations are ubiquitous in various fields
ranging from industrial applications over websites and
data-science. The development of visualizations is chal-
lenging particularly when working with dynamic data. In-
teractive visualizations are even more difficult since user
inputs need to be handled and visualization has to be up-
dated accordingly. Depending on the use case, developers
face various challenges:

• Domain modeling of complex, potentially hierarchi-
cal data.

• The choice of appropriate visualization technique.

• Multiple views on the same data are needed (e.g.
linked views) on which synchronization can be tricky.

• For large dynamic visualizations immediate user re-
sponse is crucial, which again makes performance
tuning necessary essentially polluting domain logic
with non-functional concerns.

*monika.wiszmann@gmail.com
†steinlechner@vrvis.at
‡walch@vrvis.at

There is a recent trend towards functional programming
concepts in various fields of computer science. In the
field of web-development for example, approaches such
as react and redux embrace a functional architecture. In
this work we take this approach to the extreme by using
purely functional programming and the ELM architecture
[5] as the basis for our implementation of an interactive
ranking view.

We explore the ELM architecture for visualization by
investigating LineUp [7], a state-of-the-art visualization
tool stressing interactivity. In the implementation section
we represent a case study, based on the existing frame-
work Aardvark.Media [16], which implements the ELM
architecture and provides the necessary features such as
dynamic user interfaces and efficient update mechanisms.
The contributions can be summarized as such:

• We present a case study of a complex state-of-the-
art visualization technique implemented in the ELM
architecture, present reusable parts and show the ap-
plicability of the approach in a demo application.

• In our evaluation we analyse and improve the system
performance by utilizing optimized data-structures
enabling immediate feedback.

2 Background

As our work is based on functional and reactive program-
ming paradigms we first give a brief introduction to func-
tional programming followed by an overview of reactive
programming techniques. Afterward, we explain the con-
cept of incremental evaluation followed by an overview of
well-established visual systems.

2.1 Functional Programming

The functional programming paradigm treats computation
as the evaluation of mathematical functions. It avoids
mutable data and changing-state, thus eliminating side-
effects, which makes the program much easier to predict.

Features like higher-order functions and lazy evaluation
contribute greatly to modularity, which is crucial for well-
structured software. Programs become easy to write, easy

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Visualization of the ELM architecture [16]

to debug, and it provides a collection of modules that can
be re-used to reduce future programming efforts [10].

2.2 Reactive Programming

Reactive programming is a declarative programming
paradigm that enables automatic propagation of change to
dependent data. Because of this, it is well-suited for de-
veloping event-driven and interactive applications [1].

As a variation of the well-known Model-View-
Controller pattern, the ELM architecture (see Fig. 1)
makes use of the reactive programming paradigm. It con-
sists of an immutable model that holds the current state
and data. The view function generates a graphical repre-
sentation of the model as HTML code. The user can in-
teract with this representation and trigger update actions
on runtime. The update function receives the action and
updates the model accordingly in a reactive manner and
therefore completes the unidirectional data flow. Impor-
tant to note, and in contrast to traditional approaches the
data-flow is purely functional, i.e. all data is immutable.
As a consequence, programmers do not need to care about
updating the user interface, since, virtually the complete
UI is recomputed after each iteration and optimization is
taken care of in the implementation. Because of the well-
organized code, a programmer can navigate and find the
lines of code that are of interest with ease [8].

Following code highlights the ELM architecture by a
simple example. The model holds a single integer value.

type Model = { value : int }

The Message describes the possible actions.

type Message =
| Inc

Given the model and a message Inc the update method
increases the value of the model by one and returns the
new model.

let update (model : Model) (msg : Message) =
match msg with
Inc -> { model with value = model.value + 1

}↪→

The model gets visualized by the view function. Clicking
the button results in the update of our model. The resulting
changes in model.value are instantly displayed.

let view (model : MModel) =
div [] [
button [onClick (fun _ -> Inc)] [text "+"]
text "my value:"
Incremental.text (model.value |> Mod.map

string)↪→

]

Further examples can be found at the Aardvark.Media
platform [16]

2.3 Incremental Evaluation

Incremental computation means that only structures that
are dependent on changes are updated. This provides fine-
grained control of the visualization design [9]. Incremen-
tal rendering leads to the re-computation of only affected
pixels limiting the number of re-computations and there-
fore reduces computation time [15].

In their course, Steinlechner et al. [21] presented an in-
cremental approach to scene graphs. Scene graphs are the
standard approach for representing virtual scenes in mem-
ory. To make the approach practical concerning dynamic
changes to those graphs, incremental evaluation is used to
avoid repeated evaluation of unaffected elements in their
application.

Another example is an incremental rendering virtual
machine (VM) [9]. Incremental rendering is introduced as
a layer on top of standard graphics APIs such as OpenGL
or DirectX in the form of a VM. It provides an optimized
compiled representation of an arbitrary high-level scene,
leading to significant performance gain.

2.4 Visualization Systems

The following section gives an overview of two commonly
used visualization systems D3 [2] and Vega [22] as well
as Aardvark [17], the platform used in our work.

D3 (data-driven-documents) is a lower-level tool and
JavaScript library that allows to create data visual-
izations using a data-driven approach by leveraging
existing web standards like SVG, Canvas or HTLM
[23]. Data can be passed in the form of arrays or for-
mats like CSV, JSON and XML. D3 allows to bind
those data to the DOM and to apply further transfor-
mations. This has the advantage that no other tech-
nology or plugins other than the browser are required.
It can be smoothly embedded in other scripts and JS
frameworks without disturbing the rest of the code.
D3 is a popular tool in the visualization community
because of its ease of use. A downside is that DOM

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



manipulation can be extremely slow for large num-
bers of entries. SVG also has performance limitations
when dealing with large quantities of elements.

Vega (visualization grammar) provides a higher-level vi-
sualization specification language on top of D3. It en-
ables fine-grained control of the visualization design.
Its specification is a JSON file that describes an in-
teractive visualization design. It contains properties
and definitions for the data to visualize axes, scale
transforms, encoding algorithms and legends. Sig-
nals and predicates modify the visualization depend-
ing on the user interaction. These specifications are
interpreted by a runtime system to dynamically create
visualizations, or it can be cross-compiled to provide
a reusable visualization component, in the form of
editable code for a specific visualization framework
(such as D3) [22]. ELM provides a Vega package
[4] which generates JSON specifications that may be
sent to the Vega-Lite runtime to create the output. The
potential downside of Vega is that highly customized
visualizations may be more difficult to achieve.

Aardvark is an open-source platform for visual comput-
ing, real-time graphics, and visualization [14]. It is
completely implemented on top of incremental com-
putation primitives. This means all projects built on
top of the Aardvark platform are incremental by de-
fault [15]. The platform contains a fully incremen-
tal visualization library [13] which is based on incre-
mental rendering.
Another tool on the Aardvark platform is Aard-
vark.Media. It provides front-end and UI for Aard-
vark and is an interface to build applications with-
out additional complexity for handling change like
synchronizing data and its visual representations
while providing high performance through incremen-
tal HTML generation (similar to react). Data changes
update the DOM tree in an incremental manner so
that only affected parts are modified [16]. This al-
lows efficient computation of customized elements.

3 Case study

Decision-making is a complex task when considering mul-
tiple parameters of the available choices. In the following
section we present the ranking view as a tool that may be
helpful in decision making. We show examples of visual-
ization techniques that have been applied to show ranked
data. Based on this we define requirements for a user-
friendly, interactive interface.

3.1 Ranking view

Ranking views help to decide whether movie to watch next
or which GPU performs best for your budget. Some rank-
ing views are based on a single attribute like number of

sold copies for a bestseller list, others are composed of a
variety of attributes. An example for such a multi-attribute
ranking is a ranking view for smartphones that is com-
posed of performance, features, battery life, quality of dis-
play and price.

In the case of a single attribute, ranking visualization
is straight forward as the overall score corresponds to the
value of this attribute. Multiple attributes contribute in var-
ious degrees to the overall score and therefore require vi-
sualization of the composition.

Because ranking views should help in decision making,
the focus is on the interests of the user. Users can have dif-
ferent preferences as to which attribute has the most value
for them. Hence the user should be able to explore differ-
ent preference settings. In order to interpret and modify
the result of the ranking view, advanced visual tools are
required. An important aspect of interactive visualization
is that the changes by the user should be immediately vis-
ible, therefore performance and efficient rendering play a
crucial role.

3.2 Domain and user interface

Due to the broad application of rankings, a wide variety of
visualization techniques are available. The most basic way
to display ranked data is a spreadsheet. It presents a set of
ordered data together with a label for identification and
allows sorting according to an arbitrary column. A well-
known purpose tool for this technique is Microsoft Excel.
It provides a scripting interface that allows for great flexi-
bility but is only mastered by experienced users. Another
drawback of spreadsheets is the lack of interactive visu-
alization. A detailed discussion of the design of spread-
sheets was published by Few [6].

To enhance the readability of data it is more efficient to
encode values in a graphical representation. Length is a
commonly used visual variable, as it is used in histograms
(see Fig. 2b) and other bar charts [11]. To make the val-
ues comparable, the bars are usually aligned to a common
baseline. Bars can represent a single attribute or encode
the sum of multiple attributes in the form of a stacked bar
(see Fig. 2d). An example for an implementation is the
table lens technique [18]. The visualization uses a focus-
plus-context technique that works effectively on tabular
information as it supports categorical data and allows the
user to focus on multiple areas.

Our user interface and requirements are inspired by
LineUp [7] which is a part of Caleydo, an open-source
data visualization framework. It is implemented in Java
and uses OplenGL/JOGL for rendering. LineUp makes
use of the a variety of visualization techniques as described
above.

3.3 Design goals and requirements

To design a user-friendly interface that fits the needs of an
interactive, multi-attribute ranking view following require-

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Overview of our implementation. (a) The ranking view displays data of cameras. (b) Histograms visualize the
distribution of values per attribute. (c) Weight and preferred optimum per attribute. (d) Stacked bars visualize the overall
score composed of the sub scores per attribute. (e) Weighting bar for interactive use. (f) Buttons to filter attributes. (g)
Further actions.

ments have to be met:

R1: Encode rank The user should be able to quickly
evaluate the rank of an individual item.

R2: Encode cause of rank The contribution of each at-
tribute to the total score is shown, to understand how
ranks are determined. As scores are not uniformly
distributed, there can be gaps between ranks that
could be of relevance. Hence, the user must be able
to evaluate the relative difference between multiple
ranks.

R3: Support multiple attributes The user should be
able to grasp the total score of the items and com-
prehend how the single attributes contribute to it. For
further refinement, the user should be able to weight
the attributes by personal preference. The attributes
need to be normalized to be comparable.

R4: Interactive refinement and visual feedback The
contribution of a single attribute should be visible
to the user and changes of preference have to be in-
stantly visible. To make this possible, each attribute
is assigned a weight to compute the combined score.

R5: Enable filtering and sorting The user can exclude
attributes of little interest and to sort by a specific at-
tribute.

The requirements are inspired by the work of LineUp [7].
To demonstrate our use case, we used a dataset of cameras
with 13 properties such as weight, focal length, etc.[12]

4 Implementation

Our implementation is based on the ELM architecture, as
concrete implementation we use Aardvark. In the follow-
ing section, we give an introduction to the software com-
ponents used in our implementation:

4.1 F#

All components of Aardvark are mainly programmed
in F#. It is a powerful language that spans multiple
paradigms of development. It is functional by heart and
as such, it focuses heavily on functions, expressions, al-
gebraic types for creating domains and pattern matching
for control of flow. Values are per default immutable to
avoid side effects [20]. F# also supports object-oriented
aspects like classes, inheritance and interfaces. The main
advantages [19] of F# are:

• Conciseness through avoiding code “noise” trough
brackets and semicolons and the powerful type in-
ference system. It usually takes fewer lines of code
compared with C#.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Score with stacked bar (b) Textual attribute (c) Numerical attribute

Figure 3: Types of columns

• Convenience with functions as first-class objects that
can hold another function as parameter. This enables
easy creation of reusable, powerful code.

• Correctness trough a powerful type system, which
helps to avoid incorrect code. Values are immutable
by default to prevent side effects.

• Concurrency works great with the help of built in li-
braries. Because data structures are immutable shar-
ing state and avoiding locks is easy.

• Completeness as F# has access to all third party
.NET tools and libraries. Because F# is designed as a
hybrid functional/object-oriented language it can do
virtually everything C# can do.

4.2 Aardvark.Media

Aardvark.Media builds on top of the ELM architecture,
which allows building large and complex apps trough
the composition of smaller apps. It is a functional pro-
gramming interface based on F# and provides incremental
HTML rendering in addition to CSS, SVG and JavaScript
usage. Several optimization mechanisms in the back-
ground are employed that allow programmers to focus on
actual functionality instead of performance details leading
to a cleaner, more robust and scalable code.

For some types like maps and lists, Aardvark provides
an incremental implementation. This allows a faster and
more efficient calculation of changes in the interface. In
our work we will compare the implementation with the ba-
sic collection types (plist<’a> for immutable ordered
lists, hmap<’k, ‘v> for immutable maps with key ’k
mapping to values of type ’v) and the automatically syn-
thesized incremental datastructures (alist<’a> for in-
cremalized lists, amap<’k, ‘v> and incrementalized
maps which both automatically track changes opposed to
the non-incremental counterpars) to demonstrate the per-
formance of an incremental rendering approach (see Sec-
tion 4.4.2). More information about these types can be
found in the Aardvark.Media documentation [16].

4.3 Basic design and interaction

Our ranking view is implemented as a table (see Fig. 2a),
where the user can interactively sort and filter attributes in
their corresponding column. We select a well distinguish-
able color scheme of Colorbrewer 2.0 [3], which is also
color-blind friendly to encode the different attributes.

Columns The columns correspond to one of the three
types:

• Score is always visible and is represented by the left-
most column in the table. It shows a percentage value
and a stacked bar as seen in Fig. 2d and Fig. 3a. The
percentage is calculated depending on the optimum,
as described in the header options. The stacked bar
shows a serial combination of the attributes, whereby
the width of each element represents the contribution
of the attribute to the overall score. The attributes are
encoded by color and the elements within the stacked
bar are highlighted when hovering over the header la-
bel of the corresponding attribute.

• Textual attribute represents a string (Fig. 3b). An
example in our dataset is the field Model holding the
camera model name. Attributes of this type have no
effect on the score or rank, hence neither the options
nor the histogram in the header are available as seen
in Fig. 4.

• Numerical attribute represents either an integer or
a float value. It contributes to the calculation of the
score. The length of the colored bar represents the
percentage compared to the other values of this at-
tribute (Fig. 3c).

Header The header consists of three rows (Fig. 4). The
uppermost row shows a histogram of the distribution of
the corresponding attribute. In the second row are the la-
bels. A mouse click on an element sorts the view by the
values of the corresponding attribute. The third row rep-
resents additional options to manually set the weight of
the attribute and to switch the optimum between Min and
Max. Max means that the higher the value is the better it is
rated and vice versa for Min. This row is optional and can
be masked out. If the weight of an attribute is changed, the
rest of the weights are scaled, so that the sum of all weights
equals 1. Only weights between 0 and 1 are accepted.

Figure 4: The header of the ranking view includes the his-
togram, label with sorting function and additional options
for weighting or setting the optimum (min, max)

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



Weighting bar Another way to change the weights is
the weighting bar (Fig. 2e, Fig. 5) underneath the table.
The user can interactively alter the weight of an attribute
by dragging the small red bar on the right of the corre-
sponding attribute, which triggers an updated ranking of
the solution. The width of the sub bars encodes the rel-
ative weight of the attributes. Each attribute of the type
number that is currently not filtered gets included and is
encoded by color and label.

Figure 5: The weighting bar is used to interactively change
the weights of the attributes by dragging.

Filtering To filter certain attributes the user has to click
on one of the red buttons underneath the weighting bar
(Fig. 2f). The corresponding attribute is removed from
the table and the scores are re-calculated excluding this
property. Filtered elements become visible in the form of
green buttons. Clicking this button adds the attribute back
into the ranking view. Due to the color encoding user can
quickly grasp interrelations of the attribute and its contri-
bution in the stacked bar of the scores or the weighting
bar.

4.4 Code samples

In this chapter, we want to present the code of our imple-
mentation.

4.4.1 ELM Architecture

The following lines describe the model of our ranking
view.
type Table =

{
header : Map<string, Attribute>
weights : hmap<string, float>
rows : array<Row>
visibleOrder : List<string> //holds

attribute names that should be
displayed in corresponding order

↪→

↪→

showOptions: bool
colors : Map<string, C4b>
dragedAttribute: Option<string>
weightingFunction : WeightingFunction

}

Possible actions are described as Messages.

type Message =
| SetWeight
| NormalizeWeight
| CalculateScore
//...

The following code gives an overview of our update
function. For brevity, we only show a subset of possible
messages. Please note, that all messages create a new
immutable model based on the input model.

let update (model : Table) (msg : Message) =
match msg with

| SetWeight (name, value) ->
let newWeights = model.weights |>

HMap.add name value↪→

CalculateScore {model with weights =
newWeights}↪→

| NormalizeWeight ->
let visibleAttributes =

getVisibleAttributes
model.header model.visibleOrder

↪→

↪→

let weights =
visibleAttributes
|> List.map (fun attribute ->
(attribute.name, (1.0 / float

(visibleAttributes).Length)))↪→

|> Map.ofList
CalculateScore { model with weights

= HMap.ofMap weights}↪→

| CalculateScore ->
CalculateScore model

Our view is implemented as an incremental HTML
table. The header contains three rows, holding the
histograms, the title of the corresponding attribute and
the optional weighting-options including the optimum
preference. The visualization of the table rows depends
on the data type of the attribute.
The following code shows the creation of the header.

let view (model : MTable) =
Incremental.table (*styling*) <|

// adaptive list builder enables
incremental rendering↪→

alist {
// initialize model attributes
yield thead [] [

yield drawHistogams headers
visibleOrder rows colors↪→

yield drawHeaderWithSorting
headers visibleOrder colors↪→

match showOptions with
| false -> ()
| true -> yield drawOptions

headers visibleOrder
model.weights

↪→

↪→

]
}

Again, please note that, for each generated model, the view
function needs to be re-executed from scratch. This results
in clear but also inefficient code.

4.4.2 Incremental Rendering

A solution for an efficient and clean, purely functional ren-
dering is the incremental approach. To enable incremental
rendering we replaced basic structures with adaptive ones.
An example is the creation of a div and its attributes. In
our first implementation, we hand over the attributes as a
list into a simple div.

let attributes =
[

clazz selected;
onMouseMove (fun _ -> Highlight

(key, true));↪→

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



onMouseLeave (fun _ -> Highlight
(key, false))↪→

style (sprintf "height: 100%%;
width: %.2f%%; background: %s;
float: left" width color);

↪→

↪→

]
div [attributes][]

For the incremental approach we use an amap and hand
it over to the Incremental.div.

let attributes =
amap {

yield clazz selected;
yield onMouseMove (fun _ -> Highlight

(key, true));↪→

yield onMouseLeave (fun _ -> Highlight
(key, false))↪→

yield style (sprintf "height: 100%%;
width: %.2f%%; background: %s; float:
left" width color);

↪→

↪→

} |> AttributeMap.ofAMap
Incremental.div attributes AList.empty

As we can see the code stays at the same syntactical level
and changes do not require extensive refactorization.

5 Evaluation

Our implementation allows users to analyze and compare
ranking data in a user-friendly way. We optimize the ren-
dering performance of the ranking view to support high-
frequent user interactions.

5.1 Design requirements

In our tabular visualization, the user can easily grasp the
rank of an individual item by sorting according to the
score. This fulfills R1. The stacked bar visualizes the rel-
ative contribution of each attribute, which solves the prob-
lem of R2 and R3. Highlighting of the bar while hovering
over the associated header clarifies this. The length of the
stacked bar represents the overall score and makes it easy
to compare.
To visualize the distribution of an attribute among the
items, which is part of R2, we incorporate a histogram
into the header. Weights can be set by the user in two
ways: manually, by typing the relative proportion of the
attribute into the field in the header (R3), or interactively,
by dragging the weighting bar (R3 and R4). Using the
normalize weight button underneath the weighting
bar, the weights can be reset to uniform weightings. Every
weight adjustment triggers an instant adaption of the rank-
ing view. The user gets immediate visual feedback on how
the changes of his or her preferences affect the ranking, as
required in R4.
To further refine weights we enabled filtering of the at-
tributes per mouse click on the corresponding buttons. By
clicking on the label in the header, the user can sort scores
or the values of an attribute in ascending or descending

way, illustrated by a small down- or upward pointing ar-
row (see the score label in Fig. 2 or Fig. 4). By enabling
filtering and sorting we also met R5.

5.2 Performance optimization

The computer used for the performance measurements has
following specifications:

• CPU: Intel® Core™ i5-4690K CPU @ 3.50GHz,
3501 Mhz, 4 Cores

• GPU: GeForce GTX 1070 8GB GDDR5

• RAM: 16.0 GB

• Operation system: Windows 10

Our first implementation uses non-incremental structures
like the map hmap<’k, ‘v>. When an element in this
map is changed, the whole structure of the hmap is up-
dated. As a consequence, the dependent UI elements are
also updated. This results in a distinctly negative impact
on the performance of the visualization. To illustrate the
benefit of incremental rendering we provide the same im-
plementation with the adaptive structures like amap<’k,
‘v>. This requires only small changes as shown in our
code samples in 4.4.2. We automated the dragging of our
weighting bar for repeatability and measured the time how
long the updating and rendering of the ranking view takes.
Our results are as follows:
Our first implementation took on average 0.2912±0.0647
seconds per update. During usage, the lag is clearly notice-
able. After swapping the map for its incremental version
the average update time decreased to 0.0590±0.0224 sec-
onds. With minor changes, we were able to improve our
performance by a factor of 5.

6 Conclusions

In this work, we provided an interactive solution for a
multi-attribute ranking view. We implemented the user in-
terface using Aardvark.Media which is based on the ELM
architecture and uses a functional approach with F#.

We evaluated requirements, which had to be met to en-
able an user to quickly and easily adapt the rankings to her
or his needs. The ranking depends on the values and the
weights of the single attributes. An interactive approach in
changing those weights has been implemented and visual
feedback of those changes is immediately reflected by an
updated ranking view.

The performance could be significantly improved by us-
ing the incremental data structures provided by the Aard-
vark platform.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)



References

[1] Engineer Bainomugisha, Andoni Lombide Carreton,
Tom van Cutsem, Stijn Mostinckx, and Wolfgang de
Meuter. A survey on reactive programming. ACM
Comput. Surv., 45(4):52:1–52:34, August 2013.

[2] Mike Bostock. D3 - data-driven documents.
https://d3js.org, 2017. [Online; accessed
26-March-2020].

[3] Mark Harrower Cynthia Brewer. Colorbrewer
2.0. http://colorbrewer2.org/#type=
diverging&scheme=PuOr&n=11, 2017. [On-
line; accessed 07-February-2020].

[4] Evan Czaplicki. Elm vegalite.
https://package.elm-lang.
org/packages/gicentre/
elm-vegalite/latest/VegaLite#
2-specifying-the-data-to-visualize.
[Online; accessed 07-February-2020].

[5] ELM-lang.org. The elm architecture. https://
guide.elm-lang.org/architecture. [On-
line; accessed 07-February-2020].

[6] Stephen Few. Show me the numbers. Analytics Pres,
2004.

[7] Samuel Gratzl, Alexander Lex, Nils Gehlenborg,
Hanspeter Pfister, and Marc Streit. Lineup: Vi-
sual analysis of multi-attribute rankings. IEEE
transactions on visualization and computer graphics,
19(12):2277–2286, 2013.

[8] Matthew Griffith. Why elm? https:
//www.oreilly.com/library/view/
why-elm/9781491990728/, 2017. [Online;
accessed 07-February-2020].

[9] Georg Haaser, Harald Steinlechner, Stefan Maier-
hofer, and Robert F. Tobler. An incremental render-
ing vm. In Proceedings of the 7th Conference on
High-Performance Graphics, HPG ’15, pages 51–60,
New York, NY, USA, 2015. ACM.

[10] John Hughes. Why functional programming matters.
The computer journal, 32(2):98–107, 1989.

[11] Jock Mackinlay. Automating the design of graphical
presentations of relational information. Acm Trans-
actions On Graphics (Tog), 5(2):110–141, 1986.

[12] Yvonne Jansen Petra Isenberg, Pierre Drag-
icevic. Project datasets. https://perso.
telecom-paristech.fr/eagan/class/
igr204/datasets, 2018. [Online; accessed
07-February-2020].

[13] Aardvark Platform. aardvark-
platform/aardvark.rendering. https:
//github.com/aardvark-platform/
aardvark.rendering, 2015. [Online; accessed
07-February-2020].

[14] Aardvark Platform. Aardvark - an advanced
rapid development visualization and rendering ker-
nel. https://www.vrvis.at/research/
projects/aardvark/, 2017. [Online; accessed
07-February-2020].

[15] Aardvark Platform. Aardvark.media - incre-
mental rendering. https://github.com/
aardvark-platform/aardvark.docs/
wiki/Incremental-Rendering, 2017.
[Online; accessed 07-February-2020].

[16] Aardvark Platform. Aardvark.media - doc-
umentation. https://github.com/
aardvark-platform/aardvark.docs/
wiki/Aardvark.Media, 2018. [Online;
accessed 2-February-2020].

[17] Aardvark Platform. Aardvark.media - doc-
umentation. https://github.com/
aardvark-platform, 2018. [Online; ac-
cessed 26-March-2020].

[18] Ramana Rao and Stuart K Card. The table lens:
merging graphical and symbolic representations in
an interactive focus+ context visualization for tabular
information. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
318–322. Citeseer, 1994.

[19] W. Scott. Why use f#? https:
//fsharpforfunandprofit.com/
why-use-fsharp, 2018. [Online; accessed
05-February-2020].

[20] Chris Smith. Programming F#: A comprehensive
guide for writing simple code to solve complex prob-
lems. ” O’Reilly Media, Inc.”, 2009.

[21] Harald Steinlechner, Georg Haaser, Stefan Maier-
hofer, and Robert F. Tobler. Attribute grammars for
incremental scene graph rendering. In Proceedings
of the 14th International Conference on Computer
Graphics Theory and Applications, GRAPP 2019,
pages 77–88, 2019.

[22] vega.github.io. Vega 2 - documentation.
https://github.com/vega/vega/wiki/
Documentation. [Online; accessed 07-February-
2020].

[23] Nick Qi Zhu. Data visualization with D3. js cook-
book. Packt Publishing Ltd, 2013.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)


