Construction of Voronoi diagrams using Fortune’s method : A look on
an Implementation

Cuk Roman
Faculty of Electrical Engineering and Computer Science
Laboratory for Computer Graphics and Artificial Intelligence, Center for Geometric Modeling
Smetanova 17, SI-2000 Maribor, SLOVENIA
e-mail: roman.cuk@uni-mb.si, http://www.uni-mb.si/~cgm

Abstract:

The paper deals with an implementation of Voronoi diagrams using Fortune’s method. At first,
Voronoi diagrams are considered briefly. The idea of Fortune’s method is considered then. The
implementation details and used data structure are the main focus of the paper.

Keywords: Computational geometry, Voronoi diagram, Fortune’s method

1. Introduction

Voronoi diagram belong to classical problems of the computational geometry. Its origin dates back
into 1850 when it was considered by Dirichlet. The rigid mathematical fundamental was given by
Voronoi in 1908.

Let us have points p;, 0 < i <= n in n-dimensional space P. The set of all points with property that
every point inside the cell is closer to point p; than to any other point from P represents the Voronoi
cell (Figure 1). The union of all Voronoi cells is known as Voronoi diagram.

. _~=Voronoi cell

Figure 1: Voronoi cell

As seen from Figure 1, the construction of Voronoi diagram consists of repetitive subdivisions of
the space determined by the input points into subspaces to meet the Voronoi criteria:

In many applications, Voronoi diagrams are already the final solution. For example, study of
behavior and maintainance of live creature, which depends on number of neighbors with whom they
are fighting for food and lightness is exactly what Voronoi diagram expresses. However, having a
Voronoi diagram, many important geometric features like searching for the closest neighbor,
Delaunay triangulation, searching for the largest empty circle, minimum spanning tree (Euclidean
tree), can be determined in the linear time.

The first reliable algorithm for their construction has been published by Green and Sibson
[GREE77], although the Voronoi diagrams have been known for a long time. This approach used

incremental method and worked in O(nz) time. The first algorithm requiring O(n log, n) was

suggested by Shamos and Hoey (1975) [PREP85] using divide and conquer approach. However, its
implementation is complicated. In 1985, Fortune presented more elegant approach and it is
described in [BERG97, O’ROU93]. In this paper, we consider primarily the data structures needed
for the construction. In 1986, Edelsbruner and Seidel discovered beautiful connection between
Voronoi diagram and convex hulls in one higher dimension [O'ROU93]|. This method has some
beautiful properties and it is becoming more and more popular.

2. Fortune’s method

In 1985, Fortune invented an interesting algorithm for construction of Voronoi diagram. He used
the sweep-line strategy implemented by many algorithms of computer graphics and computational
geometry. The idea of the algorithm is very simple and its time complexity is O(n log, n) in the

worst case, where » is the number of input points. In the continuation, an idea of the algorithm is
shortly given; details can be find in [BERG97].

Fortune has expanded his observation in 3D. He put coins above all points from set P. All coins are
slanted for an angle of 45°. These coins are scanned with a scanning plane 77, which is also slanted
for an angle of 45° to the xy plane (Figure 2).

Figure 2: During the process of scanning, plane 77 intersects coins

In Fortune’s method, we are interested in intersections of the scanning plane with coins. These
intersections represent a curve of parabolic arcs or parabolic front. This curve has the property that

joints of parabolic arcs lie on intersection of two neighboring coins. The parallel projection of these
two coins on xy-plane represents exactly bisector on which Voronoi edge lies. At first, the method
seems very complicated, but Fortune has had the fortune on his side. If the coins and sweep plane
are considered in xy-plane, we get the sweep line and parabolic front. In Figure 3 it is easy to see
why the curve of the parabolic front is so important. Namely, Voronoi diagram is fully constructed
above the parabolic front and below we do not know anything about it.

Figure 3: 2D representation of Fortune’s method; Voronoi diagram is constructed only above parabolic front

From Figure 3, it can be seen that a topological structure of the parabolic front is changed by sliding
the scanning line over xy-plane. Here the major problem in the construction of data structures is
met. Namely: “When and how the topological structure of parabolic front is changing?” The answer
is hidden in events. Two kinds of events appear. The first is a point event and the second a circle
event.

2.1 Point event

The point event is handled when a new parabolic arc appears on parabolic front. This event happens
exactly when a new arc appears on the parabolic front, or more precise, when the scanning line /
encounters a point p; from set P. Then, the scanning plane 77 hits the coin defined above point p;
for the first time. Because the coin and the scanning plane are slanted for the same angle, the
intersection between them appears as a line on the coin surface. This line is actually a half-edge, but
if it is projected onto xy-plane we can consider it a degenerated parabola with zero width. This
degenerated parabola starts to open as the scanning plane 77 slides over the space. When a new arc
comes across, it splits the existed arc into two parts and becomes a new member of the parabolic
front (Figure 4).

T

Figure 4: When point event is encountered a new arc appears on the parabolic front

What happens with Voronoi diagram when a point event is encountered? Lets remember, that a
joint point of two arcs on parabolic front describes the Voronoi edge.

2.2 Circle event

Circle event happens when a parabolic arc shrinks to a point and disappears from the parabolic front
(Figure 5). Let g, be the disappearing arc and g and g, are two neighboring arcs before g,

disappears. These arcs are then defined by three different points p,, p, and p,. At the moment
when g, disappears, all three arcs pass through a common point g (Figure 5). The distance between
¢ and the scanning line is the same as the distance from ¢ to all three points p, p, and p, . These

three points define a circle, with its center at point ¢ which represents the Voronoi point. The lowest
point of this circle touch the scanning line and represents the circle event.

Figure 5: Parabolic arc disappears from the parabolic front

It is possible that the circle event is tried to be destroyed by some other event ("false event" or
"false alarm"). Such events must be destroyed and removed from the data structure. As will be
explained later, the detection of the false alarms is trivial.

2.3 Fortune’s algorithm

Up to now, we have met all fundamental parts of Fortune's method and so we can think about an
implementation. However, let us say just a word about termination condition. When all points are
behind the scanning line and all events have been handled, Voronoi diagram is not fully constructed
yet. We have to construct the remaining half-lines. For this purpose, the whole diagram is
surrounded by a box (Figure 6) on which border all half-edges terminate.

Figure 6: Completely defined computer represented Voronoi diagram does not contain any half-edges

The following algorithm summaries the consideration done up to now and shows the core of the
Fortune’s method.

VORONOI_DIAGRAM(P)
Input: A set P of point sites in the plane
Qutput: The Voronoi diagram Vor(P) given inside a bounding box in a doubly-connected edge list structure

{

Initialize the event tree Q with all point events
while Q is not empty do
{

Consider the event with largest y-coordinate in Q
if the event is a point event, occurring at site p,

then HANDLE POINT EVENT(p,)
else HANDLE CIRCLE_EVENT(p,)

Remove the event from Q

}

Put Voronoi diagram into a box

3. Data structures used in Fortune’s method

Fortune's method is the most popular method to construct the Voronoi diagrams today. However,
the construction of the most suitable data structures and the functions operating on them are still the
tack of a programmer. In general, three data structures are needed: one for keeping Voronoi
diagram and the other two for implementation of the sweeping process (point and circle events and
parabolic front).

3.1 Data structure of Voronoi diagram

Data structure for storing Voronoi diagram is combined from three data structures. Voronoi diagram
consists of Voronoi cells (faces), Voronoi edges and Voronoi points [BERG97]. Each group of
these elements is stored in its own data structure that is, of course, connected among them. The
graphical representation of the Voronoi diagram is shown Figure 7.

Voronoi points

Faces

Figure 7: Data structure for keeping Voronoi diagram

Let us just consider the final tasks of constructing the Voronoi diagram after all input points have
been processed. The intersection points of half-edges with the box surrounding the Voronoi diagram
are calculated. These points are proclaimed as the Voronoi points. This is done by help of the leaves
of parabolic front tree, which stay in the tree after all events have been processed. Those leaves,
which stay in the tree, represent exactly those Voronoi edges, which are not defined completely
after the construction is done.

3.2 The data structure for managing the parabolic front

The binary tree as a data structure for keeping the parabolic front is not chosen just because of quick
updating, but also because the topological structure of the parabolic front can be represented the
most naturally by the binary tree (Figure 8).

Figure 8: The representation of a topological structure of the parabolic front

The arcs on the parabolic front are represented by the tree leaves while joints between arcs are
stored by the interior tree nodes. The most left arc on the parabolic front is represented by the most
left leaf in the tree, the second left most arc is represented by the next left most leaf and so on.

Of course, the most interesting operation is inserting and deleting the parabolic arcs from the data
structure. As we mentioned in section 2.1, when a point event happens, new arc appears also on the
parabolic front by dividing the existed arc upon the event point. In the data structure representing
the parabolic front, this is manifested as replacing the leaf with a sub-tree. As shown in Figure 10,
the sub-tree consists of three nodes; the middle one represents the new arc and the other two the
divided parts of the old arc.

S R@ R
ONRONENN* B0
Ol
oo

Figure 9: Inserting a new arc into the tree representing the parabolic front

As we said in section 2.2, an arc shrinks to a point and disappears from the parabolic front at the
circle event. In the tree representing the parabolic front, this reflects as deleting a leaf from the tree.
However, with the leaf we must delete also the upper internal node and the second internal node

becomes new joint point of two neighboring arcs. The circle event determines which arc has to be
deleted. Both neighbors can be found as left and right leaf of disappearing leaf. The first node is
trivial to find, because it is the father of the disappearing leaf. But finding the second node is not
easy. We have to know on which side of the point, defining the disappearing arc the second node is.
The second node is determined as an intersection node of two searching directions (see Figure 10).
The first starts from the disappearing arc and the second from the left (if we divide arc on the left
side) or the right neighbor (if the arc on the right side is being divided). The intersection node
represents joint of two neighboring arcs.

Figure 10: Two possibilities of deleting an arc from the tree of the parabolic front

To complete the explanation of this structure, a few words is needed to explain the attributes stored
in the nodes and the leaves. We are interested especially in pointers between the tree of the
parabolic front and other structures. We are also interested in how the parabola is stored in the tree.
Let us remember that there is no need to store a real parabola; it is enough to store just a point,
which defines the parabola. This can be seen from the following equation [BERG97]:

ﬂj:z y= m(x2 - 2pj.7xx +pj2.3x +pjz.7y - sz)
g5y y

where 7 represents the scanning line at the moment of observation and p,:= (DD J.,y) represents

the point from P, which defines the arc 2, .

Internal nodes of the tree the pointers pointing to the edge in the data structure of Voronoi diagram
are stored. In this way, each edge belonging to the Voronoi point is directly accessible, when the
circle event is serviced and so there is no need to perform any search operations in the data structure
of Voronoi diagram. At the leaves of the tree a pointer to the circle event is stored, if the arc defines
a circle event. If not, pointer is set to NULL. By maintaining this pointer, we do not have to perform
any search after encountering false events.

3.3 Data structure for keeping events

The event queue Q is arranged regarding the events y-coordinates. It stores the upcoming events
that are already known. For the point event, the point is simply stored. For the circle event, the
lowest point of the circle is stored. In the last case, the pointer to the leaf in the tree of parabolic
front that represents the arc disappearing in the event is stored, too.

4. Conclusions and future work

It is known from literature, the Fortune’s algorithm works in O(n log, n) time and that it is one of

the simplest algorithms for constructing the Voronoi diagrams. Table 1 shows the obtained
measurements of spent CPU time for different number of points. It can be concluded that the
theoretical time complexity estimation is achieved also in practice. The algorithm is implemented in
C++ and the measurements have been done on PC Pentium 133 MHz and 64 Mbytes RAM. The

results of construction can be seen in Figure 11.

Table 1. Measurements of spent CPU time
No. of points 2000 4000 6000 8000 10000

Spent CPU time [s] 3.86 7.61 11.73 16.84 22.31

<~ Untitled - Fortun
File Edit Miew Help ‘“oronai

pEFIEEENETR]

>y
2%
St
i
el
e
“l-
.
<
»
~
A\
b%‘
1
e
o
i
48
0
fgg
i
Gl
)
s
e
<
X
Az

Kol
T
e
%Vg
vi
2
9
ek
)
v% “,D <&
s
i,
]
g
o
o
£
Tt

Ad
2
l::;;

SR
R
vt

£ g
o (TR
L e
e e
E!)
2y i
2N (5)

e)

B
6‘% 3 ‘Loﬁ:\g

AR P N
9 o
fo bq
¥ 225
T
¥ ‘ﬂg
.ot e
1 L
A e
Sy
2% e
2 o
D 42
] o
& A
59! s‘»a
b !
s 30

o
Vit
T &
0 ¥
R A
]

5
X%
Ay
%%"0
&
R
"‘
Bn
25
7
£]
s
I
(e
ety
Na.‘
[
SN
g
""05"
gL
vl
0
0
Ve

W
4
[
5
e]
{4
53
Sl
s |
% £
%,
iy
o
S ‘)
»
g
v
/% w/
| &
e
Bk
S
o
Q! o
IS as
S @’
a)
k2t
£
o
3

5

S/

?
&5,
&
it
S
{3
A
2
S
e
- 3‘9
e
o

g
&
0
o
e
s
o ‘\ 'J ‘,.
LD U ST
T
R
%
i
e
g
40
9;%8
iy
o
o
G
LE
ey
2
Licd,
i
7
%
3
;"4
i

e
i

; KEp ek
. x’%&"iiﬂo
Vs N Y
SRR R %
TR St 0
S os it R e S b Y TN
R Tl R e e e R e L
R R e e e e
< [H R e e ST L e B L T e D T e
TR s e e s
=¥ e &

e OO ARSI ISIAR
ki (T :
%aﬁ’ggg@&-qwg}jﬁ?

o
e
q’é‘i
I
B
&g
A‘;?
o
7
o
g
o
/%

i
%
I%;
s
i
A
<]

Lo
g‘
s
S
a8
B
N
L3
¢
0
o

P
¥

)
%

=

SR s By
Lt e e e
e TSR T e B e U R
SUCe ORI, E L LAV

\QQ‘&’M "\ A T
AL NP PR, e I3 e e T oy SR
'&Q 'ﬁvﬁ\;‘#‘wv‘ Ve /’

% "9-‘?’%35%5‘3‘1@3v

qé’ﬁ"“p 3 iigs, e

ikl

Figure 11: Voronoi diagram constructed on 4000 points

I e

5. References

[GREE77] Green, P., and R. Sibson, “Computing Dirichlet tessellations in the plane”,
Computational Journal, Vol. 21, 1977, pp. 168-173.

[BERG97] Bergde, M., M. van Kreveld, M. Vermars, O. Schwarzhopf, “Computational
Geometry: Algorithms and Applications”, Springer-Verlag, Berlin, 1997.

[O°’ROU93] O’Rourke, J., “Computational Geometry in C”, Cambridge University Press,
Cambridge, 1993.

[PREP85] Preparata, F. P., and Shamos, M.I., “Computational Geometry: an Introduction”,
Springer-Verlang, 1985.

