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Abstract

Reconstruction of gradients from sampled data is a crucial task in volume visualiza-

tion. Gradients are used, for instance, as normals for surface shading or for classi�-

cation in standard ray casting techniques. Using the ideal derivative reconstruction

�lter, which can be derived from the ideal function reconstruction �lter, is imprac-

ticable because of its in�nite extend. Simply truncating the �lter leads to problems

due to discontinuities at the edges. To overcome these problems several windows have

been de�ned, which are discussed in this paper with respect to gradient estimation.
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There is a lot of perhaps unnecessary lore about choice of a window

function, and practically every function that rises from zero to a peak

and then falls again has been named after someone.

in Numerical Recipes in C [17]

1 Introduction

Usually the goal of volume visualization is to get meaningful, two-dimensional pic-

tures from three-dimensional data sets (for instance from CT or MRI imaging). A

useful concept for that purpose is the gradient, which can be interpreted as a normal

to a surface of equal values (an iso-surface) passing through the point of interest.

Consequently, the gradient can be used to shade surfaces, since most lighting models

(for instance Gouraud shading [5] or Phong shading [16]) make use of it or it can be

used for classi�cation in ray casting techniques [7]. M�oller et al. even concede gradient

reconstruction having a greater impact on image quality than function reconstruction

itself [12].

From signal processing theory we know that the ideal reconstruction �lter is the

sinc function [15] given by

sinc(x) =
sin(�x)

�x
(1)



Provided that the function was sampled properly (according to Shannons sampling

theorem, which states that the sampling frequency must be at least twice the highest

frequency present in the function [18]) it can be reconstructed exactly by convolving

(denoted by �) the samples with the sinc function:

fr(x) = fs(x) � sinc(x) (2)

=

Z
1

�1

fs(u) � sinc(x� u) du

=
1X

n=�1

f [n] � sinc(x� n)

where fr(x) denotes the reconstructed function, fs(x) the sampled function and f [n]

the samples.

Sampling and reconstruction are often investigated in frequency domain. A func-

tion can be transformed by means of the Fourier transformation from the spatial do-

main to the frequency domain, where additional information about its behavior can

be obtained (reconstruction �lters, for instance, can be compared to the ideal one,

i.e., the sinc �lter). An excellent introduction to this topic is given by Blinn [2, 3].

In order to reconstruct the derivative of the function it is possible to reconstruct the

function and derive it discretely. However, we chose another approach which is to

derive the ideal reconstruction �lter and use it as a derivative reconstruction �lter

directly.

Deriving the sinc function (Eq. 1) yields the cosc function [1] (note that the

de�nition is not analogous):

cosc(x) =
cos(�x)

x
�

sin(�x)

�x2
=

cos(�x)� sinc(x)

x
(3)

The frequency response of the cosc function is depicted together with the frequency

response of the sinc function in Fig. 1 on the right, whereas the functions itself are

depicted on the left. Since both sinc and cosc �lter are of in�nite extend we have to use

in practice other, �nite, �lters which can, obviously, never reach the optimal frequency

response. However, we can compare them to the optimal one and, consequently, gain

additional information about their quality.

In this paper we will compare various �lters obtained by bounding the ideal deriva-

tive reconstruction �lter given by Eq. 3 to some �nite extend. The simplest way to

do this is to truncate the cosc function, which is, anyway, not the best way because

of discontinuities at the edges. So special functions (adversely called windows) were

designed to get a smoother transition to zero. Their de�nitions and a discussion of

their frequency responses is given in Section 3 after a brief overview of some work

already done in this area in Section 2. In Section 4 the test scenario used to com-

pare the windowed cosc �lters is described and the result are given and discussed in

Section 5.
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Figure 1: Sinc and cosc function on the left and their frequency responses on the right

together with the frequency responses of the central di�erence operator with linear

interpolation and the derivative of the Catmull-Rom spline.

2 Related Work

The most widely used method for gradient estimation is still the central di�erence

operator which simply computes an averaged di�erence of values along each axes:

gx =
fx+1;y;z � fx�1;y;z

2

gy =
fx;y+1;z � fx;y�1;z

2
(4)

gz =
fx;y;z+1 � fx;y;z�1

2

The same result is obtained by convolving the data set with the series
h
1

2
; 0;�1

2

i
in

each dimension, the frequency response of this series can be computed analytically [4].

However, this only estimates gradients on sample positions, in between some kind of

interpolation has to be performed. The frequency response of the central di�erence

operator combined with linear interpolation (as done by Bentum et al [1]) is depicted

in Fig. 1 on the right. It reveals the drawback of this method, which is that high fre-

quencies in the data are attenuated and therefore a rather great amount of smoothing

is introduced.

Bentum et al. [1] therefore proposed to use derivatives of cubic splines (which

already were quite popular for function reconstruction [10]) as derivative reconstruc-

tion �lters and M�oller et al. [11, 13, 14] provide an analysis and analytic comparison

of their performances. Machiraju and Yagel [8] discuss di�erent gradient estimation

schemes such as �rst reconstructing the function and then di�erentiating it or �rst

di�erentiating the �lter and convolving the data with that �lter. An elaborated com-

parison is again given by M�oller et al. [12].

Windowing itself is not that popular in computer graphics. Turkowski [19] used a

Lanczos windowed sinc-function for decimation and interpolation of 2D image data.

Goss [4] eventually proposed to use a Kaiser windowed cosc function for gradient

estimation. This method will be more closely examined in Section 3.9.



3 Window De�nitions

In the following, de�nitions of some windowing functions are given. All of the win-

dows, except one, the Parzen Window (Section 3.4), can be of arbitrary extend which

is speci�ed by a parameter � . Fig. 2 on the left depicts all windows with width two.

Also all frequency responses (Fig. 2 on the right) were generated (using the discrete

Fourier transform) with windows of extend two. Consequently, we can directly com-

pare the various windowed cosc �lters with cubic spline derivatives which have the

same extend (the frequency response of the derivative of the Catmull-Rom spline is

depicted in Fig. 1).

3.1 Rectangular Window

The simplest method to bound the ideal derivative reconstruction �lter to some �nite

extend is to truncate it. This is tantamount to multiplying it with a rectangular

function which is 1 inside some extend and 0 outside.

Rect(x; �) =

(
1 jxj < �

0 else
(5)

Although the frequency response approximates the ideal one quite good below �, it is

signi�cantly di�erent from zero in form of bumps above, which is due to the truncation

and particularly annoying in gradient reconstruction because it introduces artifacts

even more perceivable than in function reconstruction. To avoid these bumps, other

windows trade them against the rather good approximation below �.

3.2 Bartlett Window

A Bartlett Window is simply a tent function, i.e.

Bartlett(x; �) =

(
1� jxj

�
jxj < �

0 else
(6)

The frequency response approaches zero more smoothly but does not approximate the

ideal frequency response below � as good as the truncated cosc function. This rather

simple windowing function, although said to be su�cient in the Numerical Recipes

in C (used in another context) [17], performs quite poor when used for gradient

reconstruction.

3.3 Welch Window

Another quite simple window, which uses only polynomials, is the Welch window.

Welch(x; �) =

8<
: 1�

�
x
�

�2
jxj < �

0 else
(7)

Its frequency response is better than that of the Bartlett windowed cosc function

below �, but it shows again a rather distinctive bump above.
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Figure 2: Frequency responses of windowed cosc functions on the right, the windows

themselves on the left.



3.4 Parzen Window

The Parzen window is a piece-wise cubic approximation of the Gaussian Window of

extend two. It is the only window, that is discussed in this paper, that is �xed to a

certain width.

Parzen(x) =
1

4

8>>>>>><
>>>>>>:

(2 + x)3 �2 � x < �1
4� 6x2 � 3x3 �1 � x < 0

4� 6x2 + 3x3 0 � x < 1

(2� x)3 1 � x < 2

0 else

(8)

However, its frequency response is not really promising for it is worse than that of

the Bartlett windowed cosc function (generally, when compared to all other frequency

responses, it approximates the ideal one most poorly above � and is not really good

below).

3.5 Hann and Hamming Window

The Hann (due to Julius van Hann, often wrongly referred to as Hanning window [20],

sometimes just cosine bell window) and Hamming window are quite similar, they only

di�er in the choice of one parameter �:

H(x; �; �) =

(
� + (1� �) cos(� x

�
) jxj < �

0 else
(9)

with � = 1

2
being the Hann window and � = 0:54 the Hamming Window. The

Hamming window also has the disadvantage of being discontinuous at the edges (and

has therefore a, however not so severe, bump above �), which leads to clearly visible

artifacts in the images.

3.6 Blackman Window

The Blackman window is quite similar, too, to Hann and Hamming window, but it

has one additional cosine term to further reduce the ripple ratio.

Blackman(x; �) =

(
0:42 + 1

2
cos(� x

�
) + 0:08 cos(2� x

�
) jxj < �

0 else
(10)

Although its frequency response is slightly worse below �, it approaches zero more

smoothly above and turns out to produce quite satisfying results.

3.7 Lanczos Window

The Lanczos window is the central lobe of a sinc function scaled to a certain extend.

Lanczos(x; �) =

8<
:

sin(� x

�
)

� x

�

jxj < �

0 else
(11)



Turkowski [19] reported it being superior for two-dimensional image resampling tasks,

i.e. using it to bound the sinc function. However, using it to bound the cosc function

is also possible, although the frequency response shows a little bump above �.

3.8 Gaussian Window

The Gaussian Window in its general form is de�ned by

Gauss(x; �; �) =

8<
: 2�(

x

�
)
2

jxj < �

0 else
(12)

with � being the standard deviation. The higher � gets, the wider gets the Gaussian

window and, on the other hand, the more severe gets the truncation. Several Gaussian

windows with di�erent standard deviations are depicted in Fig. 2 in the third row.

The higher � the better the frequency response approximates the ideal one below �

but also the more distinctive are the bumps above �.

3.9 Kaiser Window

The Kaiser window [6] has an adjustable parameter � which controls how quickly it

approaches zero at the edges. It is de�ned by

Kaiser(x; �; �) =

8<
:

I0(�
p

1�(x=�)2)

I0(�)
jxj � �

0 else
(13)

where I0(x) is the zeroth order modi�ed Bessel function (for a de�nition, and a more

detailed discussion, of the Bessel functions see, for instance, the Numerical Recipes

in C [17]. The higher � the narrower gets the window and therefore, due to the not

so severe truncation then, the less severe are the bumps above �. In Fig. 2 again, but

in the fourth row, several Kaiser windows are depicted with di�erent values for �.

The frequency responses on the right shows that the parameter � directly controls

its shape.

Goss [4] used this window to obtain an adjustable gradient �lter, but he used it

only on sample points so that, in between sample points, some kind of interpolation

has to be performed, which he does not state explicitly. In this work, the Kaiser

windowed cosc function will be used to reconstruct gradients at arbitrary positions

which is, of course, more costly.

4 Test Scenario

The windowing functions described theoretically in the previous section were tested

in practice with two di�erent data sets which were reconstructed with always the

same reconstruction scheme so that the only di�erence between the pictures is the

windowing function used for gradient reconstruction.
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Figure 3: Sphere data set. Gradients reconstructed analytically, with central di�er-

ences and various windowed cosc �lters with window width as depicted in the lower

right corners.



Figure 4: Marschner Lobb function with analytically calculated gradients on the left,

central di�erences used for gradient reconstruction in the middle and Catmull-Rom

derivative on the right.

The �rst data set was simply a distance function (i.e., its iso-surfaces are spheres),

sampled on a 64 by 64 by 64 grid. It is depicted with analytically calculated gradients

in Fig. 3 on the top left.

The second data set was a, by now quite standard, test signal proposed by

Marschner and Lobb [9], it is depicted with analytically calculated gradients in Fig. 4

on the top left. This signal was sampled on a 40 by 40 by 40 grid in the range

�1 < x; y; z < 1 (however, the actual part depicted is zoomed in to the middle por-

tion), it is a little bit more complex than a sphere and should therefore provide more

clues of the di�erences between and the applicability of the various windowed cosc

functions.

Additionally to the windowed cosc functions, the central di�erences operator and

the derivative of a piece-wise cubic spline, known as Catmull-Rom spline [1], were

used for comparison purposes.

5 Results

In Fig. 3 the results of several gradient reconstruction schemes of the sphere data set

are depicted. In the �rst row on the left the gradients were calculated analytically,

in the middle the central di�erence operator was used, which gave, and that is quite

interesting, for this data set the best looking result. Surprisingly, the truncated cosc

function (rectangular windowed with width two, �rst row on the right) gives a really

bad result. Other windows with width two are better but not really satisfying, as can

be seen in Fig. 3 in the second row. Only the Gauss windowed (with � = 1:0) and the

Blackman windowed cosc function with window width three yield comparable results

to the central di�erence operator for this data set (depicted in the third row left and

middle image, for the right one a Lanczos windowed cosc function of the same width

was used which, admittedly, shows some irregularities again).

Another test series was carried out with the Marschner Lobb test signal. It can be

seen, with analytically calculated gradients, in Fig. 4 on the left. The images in the
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Figure 5: Marschner Lobb data set. Gradients reconstructed with various windowed

cosc function with window width as denoted in the lower right corners.
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Figure 6: Marschner Lobb data set. Gradients reconstructed with various windowed

cosc functions with window width four.



middle, reconstructed with central di�erences, and on the right, reconstructed with

the derivative of the Catmull-Rom spline, show some obvious irregularities.

Bounding the cosc function with windows of width two does not yield much better

results, as depicted in Fig. 5 �rst and second row. Again, a simple truncation yields

really bad results (�rst row left image). Some windows show a slight improvement,

but the visual appearance of the central di�erence and, at any rate, the Catmull-Rom

spline derivative is still better. However, worth mentioning is the adjustability of the

Kaiser window with its parameter � (as shown in the second row where the right

picture with � = 4 is much more appealing than the middle one with � = 2).

Extending the window width to three, eventually, yields quite satisfying results

(Fig. 5 third and fourth row). The two images in the middle column (Blackman

window in the third and Kaiser window with � = 8 in the fourth) are, at last,

quite smooth and visually appealing. However, the left column shows images with

conspicuous artifacts due to the discontinuities at the edges of the Hamming and

Kaiser (with � = 4) window. The right column shows that also windows of width

three can yield quite bad results. Notable again is the adjustability of the Kaiser

window, which ranges from really bad (with � = 2, third row right image) over

getting better (with � = 4, fourth row left image) to really good (with � = 8), and it

gets worse again with an � too high (for instance, � = 16 in the bottom right image).

Further extending the window width yields, not very surprisingly, even better

results, however, just with certain windows. Fig. 6 (on the top left) shows that,

for instance, the Bartlett windowed cosc function even with width four is quite a

bad choice and the Lanczos window (top right), although much better, still shows

some artifacts. Really good results, on the other hand, were obtained by use of the

Blackman window (�rst row, middle image) which had quite a good result with width

three already (Fig. 5 middle image on the top). Also, the Gaussian window gets now

interesting, in the second row images obtained by varying � are depicted and at least

the one with � = 1:5 is quite good. The third row, again, shows the usefulness of the

Kaiser window by varying its parameter �.

For further information and additional pictures please refer also to URL

http://www.cg.tuwien.ac.at/studentwork/CESCG99/TTheussl/

6 Conclusions

Using windowed cosc functions for gradient reconstruction is superior to other ap-

proaches (like central di�erences or cubic spline derivatives) when the window has an

adequate width. The tests performed in this work showed that this width should at

least be three. This means that it is, on the other hand, more costly than using cubic

spline derivatives (which have width two) and central di�erences anyway. For some

functions, for instance, the sphere data set used in this work, these simpler methods

yield even better results.

However, when the gradients of some more complex functions must be recon-

structed the choice of the windowing function is crucial. The tests performed with

the Marschner Lobb test signal showed that the Blackman window seems to be a



�rst good choice. If more control over the reconstruction function is necessary, the

Gaussian window, on the one hand, can be adjusted by its parameter �. However,

this seems to be a good just if the window width is four or more. On the other hand,

the Kaiser windowed cosc function yielded good results with a window width of only

three and is also adjustable by its parameter �.

Most of the windows discussed in this paper seem not to be useful for gradient

reconstruction. Especially the ones with discontinuities at the edges, which are also

visible in the frequency spectrum as bumps above �, showed some clearly visible

artifacts in the rendered images.

7 Future Work

All images in this paper were generated by evaluating the windowed cosc functions

analytically. This means that the cosc function was evaluated analytically (one cosine

and one sine term) and the windowing function as well (which is quite complex in

some cases), which is too costly for practical purposes. To avoid this, the windowing

functions could be sampled into a lookup table. This would, however, a�ect the image

quality, dependent on the sampling rate and, consequently, the size of the lookup

table. This aspect should be thoroughly investigated to obtain an adequate speed-

memory trade-o�.
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