next up previous
Next: B2-splines Up: SPLINE - BLENDED SURFACES Previous: SPLINE - BLENDED SURFACES

Gordon surface

We are given a network of curves as mentioned above. It is desired to construct a surface G(u,v) interpolating the given curves. Let us denote given u-curves $G(u,v_{j}),
j=1,\ldots,n$ and v-curves $G(u_{i},v), i=1,\ldots,m$. Curves intersect in points $G(u_{i},v_{j}), i=1,\ldots,m, j=1,\ldots,n$. Gordon surface is defined:

G(u,v)=G1(u,v)+G2(u,v)-G12(u,v)

where
G1(u,v) = $\displaystyle \sum_{i=1}^{m}G(u_{i},v)L_{i}^{m}(u)$  
G2(u,v) = $\displaystyle \sum_{j=1}^{n}G(u,v_{j})L_{j}^{n}(v)$  
G12(u,v) = $\displaystyle \sum_{i=1}^{m}\sum_{j=1}^{n}G(u_{i},v_{j})L_{i}^{m}(u)L_{j}^{n}(v)$  

and Lim(u) are blending functions satisfying:

\begin{displaymath}
L_{i}^{m}(u_{i})=1,\
L_{i}^{m}(u_{k})=0, i\neq k
\end{displaymath} (1)

We will use B2-splines to construct appropriate blending functions.


1999-04-09